• Title/Summary/Keyword: Flood level

Search Result 751, Processing Time 0.031 seconds

A Study on determining Flood Protection Elevation in Urban Area (도시지역 방어침수위 설정에 관한 연구)

  • Shin, Sang-Young;Lee, Yang-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.649-652
    • /
    • 2008
  • In urban area, flood risk is getting higher because of inland flood risk has grown up by changing rainfall intensity, rainfall pattern, changing land use and so on. Urban area is needed higher flood protection level to protect accumulated people, buildings and other infrastructures. However, even though former flood protection has focused on overflow from river, there is not a guide line for evaluating proper flood protection level. Thus, it is necessary to protect flood from inland flooding as well as overflow from river and need a proper method to evaluating flood protection level. This study present a method of determining flood protection elevation by using GIS tools for deciding proper flood protection level. The study result may contribute to urban flood protection measures in which inland flood risk increases.

  • PDF

Optimal Flood Control Volume in the Irrigation Reservoir (관개저수지의 적정 홍수조절용량 설정방법)

  • 김태철;문종필;민진우;이훈구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • Water level of irrigation reservoir during the flood season could be kept to a certain level, so called, flood control level by releasing the flood inflow in advance in order to reduce the peak discharge of next coming flood and the damage of inundation. Concept of restriction intensity of water supply was introduced to evaluate the influence of flood control volume on the irrigation water supply. Restriction intensity can be calculated by multiplying the ratio of restriction to the days of restriction which are obtained from the operation rule curve and daily water level of irrigation reservoir and it has the dimension of % day. The method of restriction intensity was applied to the Yedang irrigation reservoir with the observed data of 30 years to review whether the present flood control volume is reasonable or not, and suggest the optimal flood control volume, if possible.

  • PDF

Study on Measurement of Flood Risk and Forecasting Model (홍수 위험도 척도 및 예측모형 연구)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • There have been various studies on measurements of flood risk and forecasting models. For river and dam region, PDF and FVI has been proposed for measurement of flood risk and regression models have been applied for forecasting model. For Bo region unlikely river or dam region, flood risk would unexpectedly increase due to outgoing water to keep water amount under the designated risk level even the drain system could hardly manage the water amount. GFI and general linear model was proposed for flood risk measurement and forecasting model. In this paper, FVI with the consideration of duration on GFI was proposed for flood risk measurement at Bo region. General linear model was applied to the empirical data from Bo region of Nadong river to derive the forecasting model of FVI at three different values of Base High Level, 2m, 2.5m and 3m. The significant predictor variables on the target variable, FVI were as follows: ground water level based on sea level with negative effect, difference between ground altitude of ground water and river level with negative effect, and difference between ground water level and river level after Bo water being filled with positive sign for quantitative variables. And for qualitative variable, effective soil depth and ground soil type were significant for FVI.

Reconsideration of evaluating design flood level at Imjin River estuary (임진강 하류 감조구간에서 홍수위 산정 재고)

  • Park, Chang Geun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.617-625
    • /
    • 2017
  • In this study, it was examined that a methodology for evaluating the design flood level reasonably at Imjin River estuary affected by the tide periodically. First of all, the change of the flood level was observed by performing unsteady simulation which can take into account the characteristics of the tidal rivers. And the variations of the flood level was analyzed by change of the Manning's roughness coefficient which is sensitive to the water level calculation. The results were compared with the design flood level at Imjin River estuary announced in the 2011 Imjin River Basic Plan Report. For reference, the design flood level reported in 2011 has been calculated by using a section of a huge riverbed dredging section as input data. From the simulation results, it was found that the flood level evaluated by this study was able to satisfy the freeboard of the levee without the riverbed dredging when the roughness coefficient was assigned to the same value as that of the Han river estuary in the calculation of the flood level, and the unsteady flow simulation was carried out to reflect on the tidal river.

Determination Scheme of Variable Restricted Water Level during Flood Period of Multipurpose Dam (다목적 댐의 홍수기중 가변제한수위 결정 방안)

  • Gwon, O-Ik;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.709-720
    • /
    • 1997
  • When flood control storage lacks for the reservoir operation of multipurpose dams during flood period, the additional flood control storage should be considered for the flexible use of limited storage capacity. Flood period is divided by meteorological characteristics in this study and the water levels for water demand and flood control are investigated for the divided flood period. Based on the investigations, we suggest the variable restricted water level(VRWL) from the considerations of water conservation and flood control which can determine dam operating water level during flood period. This paper presents an application of the methodology to determination of the VRWL during flood period at the Taechong Dam and the results are discussed.

  • PDF

Uncertainty of Evaluating Design Flood and Mitigation Plan at Downstream of Imjin River (감조하천 홍수위 계산의 불확실성과 저감 대안 - 임진강 하류를 대상으로)

  • Baek, Kyong Oh;Kwon, Hyek Won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.132-137
    • /
    • 2018
  • Compared with general rivers, fluctuations of the water level and the river bed are severe in the tidal river. In hydro-dynamic aspect, such fluctuation gives different river-bed data to us according to observing period. The time-dependent river-bed data and pre-estimation of the Manning's roughness coefficient which is the key factor of numerical modelling induces uncertainty of evaluating the design flood level. Thus it is necessary to pay more attention to calculate the flood level at tidal rivers than at general rivers. In this study, downstream of the Imjin River where is affected by tide of the West Sea selected as a study site. From the numerical modelling, it was shown that the unsteady simulation gave considerable mitigation of the water level from the starting point to 15 km upstream compared to the steady simulation. Either making a detention pond or optional dredging was not effective to mitigate the flood level at Gugok - Majung region where is located in the downstream of the Imjin River. Therefore, a more sophisticated approach is required to evaluate the design flood level estimation before constructive measures adopted in general rivers when establishing the flood control plan in a tidal river.

Flood Routing Using Numerical Analysis Model (수치해석모형에 의한 홍수추적)

  • 이용직;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.117-130
    • /
    • 1989
  • In this study, an implicit one-dimensional model, DWRM(Dynamic Wave Routing Model) was developed by using the four-point weighted difference method. By applying the developed model to the Keum River, the parameters were calibrated and the model applicability was tested through the comparison between observed and computed water levels. In addition, the effects of the construction of an estuary dam to the flood wave were estimated as a result of the model application. The results of the study can be summarized as follows; 1. The roughness coefficients were evaluated by comparison between observed and computed water level at Jindu, Gyuam and Ganggyeung station in 1985. The Root Mean Squares for water level differences between observed and computed values were 0.10, 0.11, 0. 29m and the differences of peak flood levels were 0.07, 0.02, 0. 07m at each station. Since the evaluated roughness coefficients were within the range of 0.029-0.041 showing the realistic value for the general condition of rivers, it can be concluded that the calibration has been completed. 2. By the application of model using the calibrated roughness coefficients, the R. M. S. for water level differences were 0.16, 0.24, 0. 24m and the differences of peak flood level were 0.17, 0.13,0.08 m at each station. The arrival time of peak flood at each station and the stage-discharge relationship at Gongju station agreed well with the observed values. Therefore, it was concluded that the model could be applied to the Keum River. 3. The model was applied under conditions before and after the construction of the estuary dam. The 50-year frequency flood which had 7, 800m$^3$/sec of peak flood was used as the upstream condition, and the spring tide and the neap tide were used as the downstream condition. As the results of the application, no change of the peak flood level was showed in the upper reaches of 19.2km upstream from the estuary dam. For areas near 9.6km upstream from the estuary dam, the change of the peak flood level under the condition before and after the construction was 0. 2m. However considering the assumptions for the boundary conditions of downstream, the change of peak flood level would be decreased.

  • PDF

Evaluation of flood control capacity of agricultural reservoirs during flood season (홍수기 농업용 저수지의 홍수조절용량의 평가)

  • Jang, Ik Geun;Lee, Jae Yong;Lee, Jeong Beom;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • We investigated flood control capacity of 484 agricultural reservoirs with storage capacity of over 1 million $m^3$ in South Korea. In general, agricultural reservoir secures flood control capacity by setting up limited water level during flood season from late June to mid-September. The flood control capacity of an agricultural reservoir during flood season can be divided into stable flood control capacity during non-flood season, stable flood control capacity associated with limited water level, and unstable flood control capacity associated with limited water level. In general, the flood control capacity significantly (P < 0.001) increased with reservoir capacity irrespective of type of spillway. The unstable flood control capacity accounted for about 20 % of reservoir capacity in the uncontrolled reservoirs. The study reservoirs showed flood control capacity of 0.60-65 billion (B) $m^3$ and stable flood control capacity of 0.43-47 B $m^3$, depending on the upper and lower limited water levels during the flood season. The stable flood control capacity of the gated reservoirs (0.29-0.33 B $m^3$) was about two times than that of reservoirs with uncontrolled spillways (0.14 B $m^3$). The ratios of stable flood control capacity to reservoir capacity for agricultural reservoirs range from 21 to 23 %, similar to that for Daecheong multipurpose dam. Moreover, the reservoirs with over 100 mm ratio of flood control capacity to watershed area accounted for 38 % of total gated reservoirs. The results indicate that many agricultural reservoirs may contribute to controlling flood in the small watersheds during the flood season.

Study on Estimation and Application of the Fwl-D-F curves for Urban Basins (도시유역의 Fwl-D-F 곡선 산정 및 활용에 관한 연구)

  • Choi, Hyun-Il;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2687-2692
    • /
    • 2010
  • There have been performed many researched for flood magnitude analysis, for example, the Flood-Duration-Frequency relations in the west. Because flood water stage data are more available rather than flood amount data at flood gauge stations of Korea, this study developed Flood water level-Duration-Frequency (Fwl-D-F) curves using rainfall Intensity-Duration-Frequency(I-D-F) curves for the quantitative flood risk assessment in urban watersheds. Fwl-D-F curve is made from water level data for 18 years at Joongrayng bridge station of Joongrayng River basin in Han River drainage area. Fwl-D-F curve can estimate the occurrence frequency for a certain flood elevation, which can be used for urban flood forecasting. It is expected that the flood elevation can be estimated from the forecasted rainfall data using both Fwl-D-F and I-D-F curves.

A study for the target water level of the dam for flood control (댐 홍수조절을 위한 목표수위 산정연구)

  • Kwak, Jaewon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.545-552
    • /
    • 2021
  • The burden of flood control on the dam under frequently flood due to climate change and especially heavy flood in 2020 year are come to the forward and increased. The objective of the study is therefore to establish the method to estimate capacity and target water level for flood control in actual dam management. Frequency matching method was applied to establish a pair of cumulative distribution function (CDF) based on daily dam inflow and discharge records. The relationship between dam storage and discharge volume represented as a percentage of inflow volume was derived and its characteristics was analyzed. As the result, the Soyanggang (45%) and Chungju Dam (39%) contributing to flood control with temporarily storing flood runoff. The method and diagram to estimate flood control capacity and target water level for flood control in the dam were established. The result of the study could be used as a supplementary data for flood control of the dam according to the rainfall prediction on the Korea Meteorological Administration.