• Title/Summary/Keyword: Flood inundation map

Search Result 106, Processing Time 0.03 seconds

Comparison and Evaluation of the Inundation Areas by Levee Breaching using LISFLOOD (LISFLOOD 모형을 이용한 파제에 의한 범람면적 비교 평가)

  • Choi, Cheon Kyu;Choi, Yun Seok;Kim, Kyung Tak
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.383-392
    • /
    • 2014
  • The purpose of this study is to simulate inundation and evaluate the applicability of LISFLOOD model to the streams in South Korea by comparing with the inundation map using FLUMEN. The suggested levee breaching scenarios were applied to the LISFLOOD model, and the results obtained from scenarios were evaluated. The modeling results using LISFLOOD by appling the levee breaching scenarios showed 0.2% ~ 42% relative error with FLUMEN model in inundation area. But the relative error of maximum inundation area by overlapping all the flood analysis results from levee breaching scenarios such as the way making flood risk map was approximately 1.2% between two models. Meanwhile, LISFLOOD model was easy to construct input data, DEM as topographic data and discharge hydrograph as upper boundary conditions. And computing time of LISFLOOD was shorter than FLUMEN. Therefore LISFLOOD model can be applied usefully in the region that needs immediate inundation modeling.

Comparison of Flood Inundation Models using Topographic Feature (지형요소를 이용한 홍수범람해석 모형의 비교)

  • Moon, Changgeon;Lee, Jungsik;Cho, Sunggeun;Shin, Shachul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • The objective of this study is to compare flood inundation models for small stream basin. HEC-RAS model was used for the analysis of one dimensional hydraulics and HEC-GeoRAS, Ras Mapper and RiverCAD models were applied for the flood inundation analysis in Gum Chung stream. Flood inundations are to simulate by flood inundation models using observed data and rainfall on each frequency and to compare with inundation area based on the flood plain maps. The results of this study are as follows; Area of flood inundations by HEC-GeoRAS model is similar to that of flood plain map and appears in order of RAS Mapper and RiverCAD model. Flood inundation area by RiverCAD model is to estimate lager than that of RAS Mapper and HEC-GeoRAS model in flood area on each frequency and the results show that they have a little difference in models of flood inundation analysis at small stream. Comparing the area of flood inundations by flood depth, the results of three models are relatively similar in flood depth as 2.0 m below, and RiverCAD model shows a significant difference in flood depth as 2.0 m or more.

The Use of Satellite Image for Uncertainty Analysis in Flood Inundation Mapping (홍수범람도 불확실성 해석을 위한 인공위성사진의 활용)

  • Jung, Younghun;Ryu, Kwanghyun;Yi, Choongsung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.549-557
    • /
    • 2013
  • An flood inundation map is able to convey spatial distribution of inundation to a decision maker for flood risk management. A roughness coefficient with unclear values and a discharge obtained from the stage-discharge rating equation are key sources of uncertainty in flood inundation mapping by using a hydraulic model. Also, the uncertainty analysis needs an observation for the flood inundation, and satellite images is useful to obtain spatial distribution of flood. Accordingly, the objective of this study is to quantify uncertainty arising roughness and discharge in flood inundation mapping by using a hydraulic model and a satellite image. To perform this, flood inundations were simulated by HEC-RAS and terrain analysis, and ISODATA (Iterative Self-Organizing Data Analysis) was used to classify waterbody from Landsat 5TM imagery. The classified waterbody was used as an observation to calculate F-statistic (likelihood measure) in GLUE (Generalized Likelihood Uncertainty Estimation). The results from GLUE show that flood inundation areas are 74.59 $km^2$ for lower 5 % uncertainty bound and 151.95 $km^2$ for upper 95% uncertainty bound, respectively. The quantification of uncertainty in flood inundation mapping will play a significant role in realizing the efficient flood risk management.

The Simulation of Flood Inundation of Namdae Stream with GIS-based FLUMEN model (GIS 기반 FLUMEN 모형을 이용한 남대천 홍수범람 모의실험)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Spatial Information Research
    • /
    • v.18 no.2
    • /
    • pp.25-34
    • /
    • 2010
  • This study simulated flood inundation each frequency rainfall using GIS spatial information and FLUMEN model for part of Muju-Namdae Stream. To create geomorphology for the analysis of flood inundation, Triangle Irregular Network(TIN) was constructed using GIS spatial interpolation method based on digital topographic map and river profile data, unique data source to represent real topography of the river areas. And also flood inundation was operated according to the levee collapse to consider extremely flood damage scenarios. As the analysis of result, the inundation area in the left levee collapse showed more high as 3.13, 3.69, and 4.17 times comparing with one of right levee for 50, 100, and 200 year frequency rainfall and showed 1.00, 2.15, and 3.34 times comparing with one of right levee in the inundation depth with over 1.0 meter, which can cause casualties. As the analysis of inundation area of the inundation depth with over 1.0 meter, which can cause casualties in left levee collapse, it increased more high as 263% and 473% when 50 year frequency change into 100 and 200 year frequency. Also As the analysis of inundation area of the inundation depth with over 1.0 meter in right levee collapse, it increased high as 123% and 142% when 50 year frequency change into 100 and 200 year frequency. Especially, the inundation area of the inundation depth with 3.0~3.5m showed more high as 263% and 489% when 50 year frequency change into 100 and 200 year frequency. It is expected that flood inundation map of this paper could be important decision making data to establish land use planning and water treatment measures.

Assessment of Rainfall Runoff and Flood Inundation in the Mekong River Basin by Using RRI Model

  • Try, Sophal;Lee, Giha;Yu, Wansik;Oeurng, Chantha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.191-191
    • /
    • 2017
  • Floods have become more widespread and frequent among natural disasters and consisted significant losses of lives and properties worldwide. Flood's impacts are threatening socio-economic and people's lives in the Mekong River Basin every year. The objective of this study is to identify the flood hazard areas and inundation depth in the Mekong River Basin. A rainfall-runoff and flood inundation model is necessary to enhance understanding of characteristic of flooding. Rainfall-Runoff-Inundation (RRI) model, a two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously, was applied in this study. HydoSHEDS Topographical data, APPRODITE precipitation, MODIS land use, and river cross section were used as input data for the simulation. The Shuffled Complex Evolution (SCE-UA) global optimization method was integrated with RRI model to calibrate the sensitive parameters. In the present study, we selected flood event in 2000 which was considered as 50-year return period flood in term of discharge volume of 500 km3. The simulated results were compared with observed discharge at the stations along the mainstream and inundation map produced by Dartmouth Flood Observatory and Landsat 7. The results indicated good agreement between observed and simulated discharge with NSE = 0.86 at Stung Treng Station. The model predicted inundation extent with success rate SR = 67.50% and modified success rate MSR = 74.53%. In conclusion, the RRI model was successfully used to simulate rainfall runoff and inundation processes in the large scale Mekong River Basin with a good performance. It is recommended to improve the quality of the input data in order to increase the accuracy of the simulation result.

  • PDF

Flood Simulation of Upriver District Considering an Influence of Backwater

  • Um, Dae Yong;Song, Yong Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.631-642
    • /
    • 2012
  • This study aims to predict inundation and flood-stricken areas more accurately by simulating flood damage caused by reversible flow of rain water in the upper water system through precise 3D terrain model and backwater output. For the upstream of the South Han-River, precise 3D terrain model was established by using aerial LiDAR data and backwater by area was output by applying the storm events of 2002 including the history of flood damage. The 3D flood simulation was also performed by using GIS Tool and for occurrence of related rainfall events, inundation events of the upriver region of water system was analyzed. In addition, the results of flood simulation using backwater were verified by making the inundation damage map for the relevant area and comparing it with flood simulation's results. When comparing with the results of the flood simulation applying uniformly the gauging station's water surface elevation used for the existing flood simulation, it is found that the results of the flood simulation using backwater are close to the actual inundation damage status. Accordingly, the causes of flood occurred in downstream of water system and upstream that has different topographic characteristics could be investigated and applying the simulation with backwater is proved more proper in order to procure accuracy of the flood simulation for the upriver region.

Evaluation of an Applicability of HEC-RAS 5.0 for 2-D Flood Inundation Analysis (2차원 홍수범람해석을 위한 HEC-RAS 5.0 적용성 평가)

  • Lee, Choon-Ho;Lee, Tae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.726-733
    • /
    • 2016
  • Recently, the flood frequency and magnitude have increased due to heavy rainfall. Considering the present condition, a flood risk map has been published in many countries to raise awareness about flood damage to people. A flood inundation analysis model, which is used to publish the flood risk map, can be classified as river and inland inundation models according to the inundation cause. Although a variety of flood inundation analysis models are utilized both domestically and overseas, their usability is limited by the expensive price, except for the HEC-RAS model developed by U.S. Army Corps of Engineers (USACE). In the situation, the USACE has developed a 2-D HEC-RAS model that can be linked to the existing 1-D model. This model has been released as a beta version under the name, HEC-RAS 5.0. In this study, the HEC-RAS 5.0 model's features, usability, applicability, and accuracy were evaluated by comparing the performances on Gokgyo-cheon with the FLUMEN model, which is used for domestic flood risk mapping. The results of this study will contribute to river inundation analysis in many different ways after the HEC-RAS 5.0 model is stabilized.

Mapping Urban Inundation Using Flood Depth Extraction from Flood Map Image (침수지도 영상의 침수심 추출기법을 활용한 내수 침수 위험지도 작성)

  • Na, Seo Hyeon;Lee, Su Won;Kim, Joo Won;Byeon, Seong Joon
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.133-142
    • /
    • 2018
  • Increasing localized torrential rainfall caused by abnormal climate are making higher damage to human and property through urban inundation So The need of preventive measures is being highlighted. In this study, the methodology for calculating flood depth in domestic water map using an interpolation method in order to utilizing the results of flood analysis provided only in the form of a report is suggested. In the Incheon Metropolitan City S area as the test-bed, the flood depth was calculated using the interpolating the actual flood analysis by image and verification was performed. Verification results showed that the error rate was 5.2% for the maximum flooding depth, and that the water depth value was compared to 10 random points, which showed a difference of less than 0.030 m. Also, as the results of the flood analysis were presented in various ways, the flood depth was extracted from the image of the result of the flood analysis, which changed the presentation method, and then compared and analyzed. The results of this study could be available for the use of basic data from the research on the urban penetration of domestic consumption and for decision-making of policy.

Numerical Simulations of Flood Inundations in Guri (구리지역의 홍수범람해석)

  • Yu Jae Hong;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1174-1178
    • /
    • 2005
  • In this study, flood inundations have been simulated by using the numerical model FLUMEN solving the shallow-water equations with a finite volume method. Before applying to a real problem, the numerical model is first applied to simplified problems. Obtained numerical results are verified by comparing to available analytical solutions and laboratory measurements. Reasonable agreements are observed. The model is then applied to a simulation of flood events with real geometries. The results of the present study provide basic informations for a flood inundation map.

  • PDF

A Study on the Characteristics of Flood Damage Caused by landslide and Its Minimization Using GIS-The Case Study in the Samwhadong, Donghae city, Kangwondo, Korea

  • Kang, Sang-Hyuk
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.493-499
    • /
    • 2002
  • This paper presents the disaster control due to flooding through the case study of Samwhadong, Donghae city, Kangwondo, broken out at 31, August 2002. In order to assess the characteristics of flood damage one must consider social and geological conditions, the factors of flood risk were derived based on GIS. For reduction of flood damage, flood hazard map was prepared for local residents. These information will support refuge activities, it would aid the reduction of flood damage.

  • PDF