• Title/Summary/Keyword: Flood inundation map

Search Result 106, Processing Time 0.029 seconds

A Study on the Generation of DEM for Flood Inundation Simulation using NGIS Digital Topographic Maps (NGIS 수치지형도를 이용한 효율적인 홍수범람모의용 지형자료 구축에 관한 연구)

  • Kwon, Oh-Jun;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.49-55
    • /
    • 2006
  • Nowadays, flood hazard maps have been generated to minimize the damages from the flooding. To generate such flood hazard maps, LiDAR data can be used as data source with higher data accuracy. LiDAR data, however, requires relatively higher cost and longer processing time. In this background, this study proposed DEM generation using NGIS digital topographic maps. For that, breaklines were processed to count directions of water flows. In addition, the river profile data, unique data source to represent real topography of the river area, were integrated to the breaklines to generate DEM. City of Kuri in Kyunggi Province was selected for this study and 1:1,000 and 1:5,000 topographic maps were integrated to process breaklines and river profile data were also linked to generate DEM. The generated DEM showed relatively lower vertical accuracy from mixing 1:1,000 and 1:5,000 topographic maps since 1:1,000 topographic maps were not available for some portion of the area. However, the DEM generated demonstrated reasonable accuracy and resolution for flood map generation as well as higher cost saving effects. On the contrary, for more efficient utilization of NGIS topographic maps, periodic map updating needs to be made including technical consideration in building breaklines and applying interpolation methods.

  • PDF

ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics (지표 유출 특성을 고려한 홍수취약지역 지형학적 인자의 ROC 분석)

  • Lee, Jae Yeong;Kim, Ji-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.327-335
    • /
    • 2020
  • The method of selecting an existing flood hazard area via a numerical model requires considerable time and effort. In this regard, this study proposes a method for selecting flood vulnerable areas through topographic analysis based on a surface runoff mechanism to reduce the time and effort required. Flood vulnerable areas based on runoff mechanisms refer to those areas that are advantageous in terms of the flow accumulation characteristics of rainfall-runoff water at the surface, and they generally include lowlands, mild slopes, and rivers. For the analysis, a digital topographic map of the target area (Seoul) was employed. In addition, in the topographic analysis, eight topographic factors were considered, namely, the elevation, slope, profile and plan curvature, topographic wetness index (TWI), stream power index, and the distances from rivers and manholes. Moreover, receiver operating characteristic analysis was conducted between the topographic factors and actual inundation trace data. The results revealed that four topographic factors, namely, elevation, slope, TWI, and distance from manholes, explained the flooded area well. Thus, when a flood vulnerable area is selected, the prioritization method for various factors as proposed in this study can simplify the topographical analytical factors that contribute to flooding.

Development of Flood Inundation Map by Applying Probabilistic Estimation Method of Levee Breach Outflow (제방붕괴유출량의 확률론적 산정기법을 적용한 홍수범람도 개발)

  • Nam, Myeong Jun;Lee, Jae Young;Lee, Chang Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.377-377
    • /
    • 2020
  • 이상기후변화에 따른 홍수피해는 매년 빈번히 발생하고 있고, 이러한 피해에 대비하여 예측 및 대응방안을 신속히 확보할 수 있는 재난예측 및 대응시스템은 필수로 요구되는 실정이다. 강우의 의한 홍수발생과 하천수위 급상승에 의한 제방의 월류 및 파제 메커니즘은 상당히 복잡하고 유동적이며 다양한 불확실성을 포함한다. 본 연구에서는 극치 강수량의 매개변수들의 불확실성을 고려하기 위해 수행된 비정상성 빈도해석 기반의 수문시나리오를 바탕으로 산정된 MCS(Monte Carlo Simulation)기반 확률홍수위를 산정하였고, 이를 활용하여 2차원 제내지 침수해석의 경계조건으로 활용하여 홍수위 변동에 의한 하천 제방 붕괴 변동폭의 범위를 설정하고, 그에 따른 제방붕괴 유출량의 변동 범위를 산정하였다. 또한 확률론적 파제 유입량에 의한 제내지의 침수심과 침수범위를 MCS기반의 2차원 제내지 침수해석을 통해 정량화하여 확률침수심도를 작성하였다. 이러한 홍수발생의 전반적인 메커니즘을 고려하여 매개변수들의 불확실도를 정량적으로 평가함으로써 기존의 결정론적 해석기법보다 신뢰성 있는 침수심 예측결과를 확보하였다.

  • PDF

Coastal Complex Disaster Risk Assessment in Busan Marine City (부산 마린시티 해안의 복합재난 위험성 평가)

  • Hwang, Soon-Mi;Oh, Hyoung-Min;Nam, Soo-yong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.506-513
    • /
    • 2020
  • Due to climate change, there is an increasing risk of complex (hybrid) disasters, comprising rising sea-levels, typhoons, and torrential rains. This study focuses on Marine City, Busan, a new residential city built on a former landfill site in Suyeong Bay, which recently suffered massive flood damage following a combination of typhoons, storm surges, and wave overtopping and run-up. Preparations for similar complex disasters in future will depend on risk impact assessment and prioritization to establish appropriate countermeasures. A framework was first developed for this study, followed by the collection of data on flood prediction and socioeconomic risk factors. Five socioeconomic risk factors were identified: (1) population density, (2) basement accommodation, (3) building density and design, (4) design of sidewalks, and (5) design of roads. For each factor, absolute criteria were determined with which to assess their level of risk, while expert surveys were consulted to weight each factor. The results were classified into four levels and the risk level was calculated according to the sea-level rise predictions for the year 2100 and a 100-year return period for storm surge and rainfall: Attention 43 %, Caution 24 %, Alert 21 %, and Danger 11 %. Finally, each level, indicated by a different color, was depicted on a complex disaster risk map.

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF

Development of Integrated Flood Analysis Program for Standardization of Disaster Map (재해지도 작성 표준화를 위한 내·외수 통합 침수해석 프로그램(i-FIM)의 개발)

  • Lee, Jae Yeong;Keum, Ho Jun;Kim, Beom Jin;Cha, Young Ryong;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.278-278
    • /
    • 2018
  • 현재 우리나라에서는 행정안전부의 풍수해저감종합계획, 사전재해영향성검토협의, 재해위험지구개선사업 등에 해외에서 개발된 상용프로그램이 사용돼 접근성 저하로 인해 지자체 방재담당자의 실무나 대학에서 연구용으로 다루기에는 한계가 있다. 이에 본 연구에서는 내수침수, 외수침수, 2차원 침수해석으로 구성하여 GUI 기능을 강화한 통합침수재해지도 작성시스템(i-FIM, Integrated Flood Inundation Modeling system)을 개발하여 입력자료의 구성 및 매개변수의 수정이 용이하게 함으로써 하수관망 등에 부분적인 설계 변경이 있는 경우 지자체 방재담당자가 간단한 작업을 통해 침수영향 변화를 쉽게 파악할 수 있도록 하였다. 또한, 상세한 지형의 반영이 필요한 도시지역의 2차원 침수해석의 경우 계산격자 망의 크기가 작아질수록 소요되는 계산시간이 기하급수적으로 증가하는 한계가 있어 i-FIM에서는 계산격자를 $2{\times}2$, $3{\times}3$, $5{\times}5$ Subgrid 형태의 격자를 적용하고, 병렬프로그래밍과 계산시간조정 기능을 추가하여 2차원 침수해석 모형의 계산 속도를 향상시켰다. 이를 실무에 적용하기 앞서 2006년 집중호우로 인해 안성시에서 발생한 제방 붕괴사상, 2016년 태풍 차바로 인해 울산시에서 발생한 제방 월류 사상을 통해 침수흔적도와 비교하여 검증을 실시하였다. i-FIM에서 최종적인 2차원 침수해석 결과는 2017년에 개정된 '재해지도 작성 기준 등에 관한 지침'의 침수심 등급 구분의 색채 설정에 따라 각 격자별 침수심을 표출함으로써 표준화된 재해지도 작성이 가능하도록 하였다. 또한, 포털사이트의 지도 및 위성지도에 표출함으로써 침수 위험이 발생할 수 있는 지역의 현재 이용 용도를 파악하여 침수재해에 대한 상세한 대책을 마련할 수 있을 것으로 판단된다.

  • PDF

Network analysis for assessing urban resilience from the perspective of urban flooding: case study of Seoul, Korea (도시침수 관점에서의 도시회복력 평가를 위한 네트워크 분석: 서울특별시 중심으로)

  • Park, HyungJun;Song, Sumin;Kim, DongHyun;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.371-383
    • /
    • 2024
  • The quantification methods and definitions of resilience vary and are studied across many fields. However, this diversity can lead to gaps in interpretation regarding the meaning and indicators of resilience, potentially having a negative impact on resilience assessments. Therefore, uniform standards for defining and quantifying resilience are essential. This study presented a definition of resilience and socio-structural evaluation methods of resilience through network analysis. Furthermore, through analyzing various definitions of resilience, the definition of resilience in the context of urban flooding was presented. Distinguishing between static and dynamic resilience, an evaluation method based on common attributes was proposed. Lastly, the economic effects of introducing resilience were analyzed using an inundation trace map. Future research on the secondary effects through standardized resilience assessments is expected to be widely utilized in decision-making stages within urban flood policies.

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

Sewer overflow simulation evaluation of urban runoff model according to detailed terrain scale (상세지형스케일에 따른 도시유출모형의 관거월류 모의성능평가)

  • Tak, Yong Hun;Kim, Young Do;Kang, Boosik;Park, Mun Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.519-528
    • /
    • 2016
  • Frequently torrential rain is occurred by climate change and urbanization. Urban is formed with road, residential and underground area. Without detailed topographic flooded analysis consideration can take a result which are wrong flooded depth and flooded area. Especially, flood analysis error of population and assets in dense downtown is causing a big problem for establishments and disaster response of flood measures. It can lead to casualties and property damage. Urban flood analysis is divided into sewer flow analysis and surface inundation analysis. Accuracy is very important point of these analysis. In this study, to confirm the effects of the elevation data precision in the process of flooded analysis were studied using 10m DEM, LiDAR data and 1:1,000 digital map. Study area is Dorim-stream basin in the Darim drainage basin, Sinrim 3 drainage basin, Sinrim 4 drainage basin. Flooding simulation through 2010's heavy rain by using XP-SWMM. Result, from 10m DEM, shows wrong flood depth which is more than 1m. In particular, some of the overflow manhole is not seen occurrence. Accordingly, detailed surface data is very important factor and it should be very careful when using the 10m DEM.

Determination of Flood Reduction Alternatives for responding to climate change in Gyeongan Watershed (기후변화 대응을 위한 경안천 유역의 홍수저감 대안 선정)

  • Han, Daegun;Choi, Changhyun;Kim, Duckhwan;Jung, Jaewon;Kim, Jungwook;Kim, Soo Jun
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.154-165
    • /
    • 2016
  • Recently, the frequency of extreme rainfall event has increased due to climate change and impermeable area also has increased due to rapid urbanization. Therefore, we ought to prepare countermeasures for flood reduction to reduce the damage. To consider climate change, the frequency based rainfall was calculated according to the aimed period(reference : 1971~2010, Target period I : 2011~2040, Target period II : 2041~2070, Target period III : 2071~2100) and the flood discharge was also calculated by climate change using HEC-HMS model. Also, the flood elevation was calculated by each alternative through HEC-RAS model, setting 5 sizes of drainage pumps and reservoirs respectively. The flood map was constructed using topographical data and flood elevation, and the economic analysis was conducted for reduction of flood damage using Multi dimension - Flood Damage Analysis, MD-FDA. As a result of the analysis on the flood control effect, a head of drainage pump was reduced by 0.06m up to 0.44m while it was reduced by 0.01m up to 1.86m in the case of a detention pond. The flooded area shrunk by up to 32.64% from 0.3% and inundation depth also dropped. As a result of a comparison of the Benefit/Cost index estimated by the economic analysis, detention pond E in period I and pump D in period II and III were deemed appropriate as an alternative for climate change. The results are expected to be used as good practices when implementing the flood control works considering climate change.