• Title/Summary/Keyword: Flood estimation

Search Result 512, Processing Time 0.021 seconds

The Use of Satellite Image for Uncertainty Analysis in Flood Inundation Mapping (홍수범람도 불확실성 해석을 위한 인공위성사진의 활용)

  • Jung, Younghun;Ryu, Kwanghyun;Yi, Choongsung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.549-557
    • /
    • 2013
  • An flood inundation map is able to convey spatial distribution of inundation to a decision maker for flood risk management. A roughness coefficient with unclear values and a discharge obtained from the stage-discharge rating equation are key sources of uncertainty in flood inundation mapping by using a hydraulic model. Also, the uncertainty analysis needs an observation for the flood inundation, and satellite images is useful to obtain spatial distribution of flood. Accordingly, the objective of this study is to quantify uncertainty arising roughness and discharge in flood inundation mapping by using a hydraulic model and a satellite image. To perform this, flood inundations were simulated by HEC-RAS and terrain analysis, and ISODATA (Iterative Self-Organizing Data Analysis) was used to classify waterbody from Landsat 5TM imagery. The classified waterbody was used as an observation to calculate F-statistic (likelihood measure) in GLUE (Generalized Likelihood Uncertainty Estimation). The results from GLUE show that flood inundation areas are 74.59 $km^2$ for lower 5 % uncertainty bound and 151.95 $km^2$ for upper 95% uncertainty bound, respectively. The quantification of uncertainty in flood inundation mapping will play a significant role in realizing the efficient flood risk management.

Estimation of Flood Discharge and Forecasting of Flood Stage in Small-Medium Urban Basin (중소도시유역의 홍수량산정 및 홍수위 예측)

  • Kim, min-jeong;Kim, byeong-chan;Lee, jong-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.432-436
    • /
    • 2009
  • Recently, damage of flood is increased because of a short of time of concentration by development and a rise in runoff discharge by frequently heavy rain. The increase of runoff discharge is resulted in not only rise of water level but also damage of lives and property around river. Therefore, it is should be the first to estimate the exact runoff discharge. And based on the estimated flood discharge, flood damage is prevented by estimating inundated area of flood. In this study, flood stage is forecasted using HEC-HMS and HEC-RAS for Namdae-stream. The peak discharges were determinated by probability rainfall with the return period. The peak discharges obtained from HEC-HMS were inputted boundary conditions for the channel routing. Flood stages were evaluated using HEC-RAS.

  • PDF

Study of Design Flood Estimation by Watershed Characteristics (유역특성인자를 이용한 설계홍수량 추정에 관한 연구)

  • Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.887-895
    • /
    • 2006
  • Through this research of the analysis on the frequency flood discharges regarding basin property factors, a linear regression system was introduced, and as a result, the item with the highest correlation with the frequency flood discharges from Nakdong river basin is the basin area, and the second highest is the average width of basin and the river length. The following results were obtained after looking at the multi correlation between the flood discharge and the collected basin property factors using the data from the established river maintenance master plan of the one hundred twenty-five rivers in the Nakdong river basin. The result of analysis on multivariate correlation between the flood discharges and the most basic data in determining the flood discharges as basin area, river length, basin slope, river slope, average width of basin, shape factor and probability precipitation showed more than 0.9 of correlation in terms of the multi correlation coefficient and more than 0.85 for the determination coefficient. The model which induced a regression system through multi correlation analysis using basin property factors is concluded to be a good reference in estimating the design flood discharge of unmeasured basin.

A Study of Flood Runoff Variation by Travel Times Estimation Methods (도달시간 산정방법에 따른 홍수유출특성 변화에 관한 연구)

  • Park, Ki-Bum;Ko, Jin-Seuk;Jee, Hong-Gee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.34-45
    • /
    • 2006
  • In this study comparison estimates travel times with observed travel time. In generally, peak flood discharges decrease become travel times longer. It is closely related to storage constant for the watershed routing of a flood. There are so many empirical formulas available for the estimation of travel time, storage coefficients and lag time but results computed generally show great different depending on individual formulas. When calculated flood discharge depend on the travel times varying the discharge. In this study the Wichun travel time shorter optimization travel time than observed travel time for the rusa and memi. There are showed good results for flood discharges, water level and velocity of the memi at the Younggok.

  • PDF

Analysis of Regional-Scale Weather Model Applicabilities for the Enforcement of Flood Risk Reduction (홍수피해 감소를 위한 지역규모 기상모델의 적용성 분석)

  • Jung, Yong;Baek, JongJin;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.267-272
    • /
    • 2012
  • To reduce the flood risk caused by unexpected heavy rainfall, many prediction methods for flood have been developed. A major constituent of flood prediction is an accurate rainfall estimation which is an input of hydrologic models. In this study, a regional-scale weather model which can provide relatively longer lead time for flood mitigation compared to the Nowcasting based on radar system will be introduced and applied to the Chongmi river basin located in central part of South Korea. The duration of application of a regional weather model is from July 11 to July 23 in 2006. The estimated rainfall amounts were compared with observations from rain gauges (Sangkeuk, Samjook, and Sulsung). For this rainfall event at Chongmi river basin, Thomson and Kain-Frisch Schemes for microphysics and cumulus parameterization, respectively, were selected as optimal physical conditions to present rainfall fall amount in terms of Mean Absolute Relative Errors (MARE>0.45).

Uncertainty Analysis of Flood Damage Estimation Using Bootstrap Method and SIR Algorithm (Bootstrap 방법 및 SIR 알고리즘을 이용한 예상홍수피해액의 불확실성 분석)

  • Lee, Keon-Haeng;Lee, Jung-Ki;Kim, Soo-Jun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.53-66
    • /
    • 2011
  • We estimated the expected flood damage considering uncertainty which is involved in hydrologic processes and data. Actually, this uncertainty represents a freeboard or safety factor in the design of hydraulic structures. The uncertainty was analyzed using Bootstrap method, and SIR algorithm then the frequency based rainfalls were estimated for each method of uncertainty analysis. Also the benefits for each uncertainty analysis were estimated using 'multi-dimensional flood damage analysis(MD-FDA). As a result, the expected flood damage with SIR algorithm was 1.22 times of present status and Boostrap 0.92 times. However when we used SIR algorithm, the likelihood function should be selected with caution for the estimation of the expected flood damage.

Estimation of Trigger Rainfall for Threshold Runoff in Mountain River Watershed (산지하천 유역의 한계유출량 분석을 위한 기준우량 산정)

  • Kim, Dong Phil;Kim, Joo Hun;Lee, Dong Ryul
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.571-580
    • /
    • 2012
  • This study is on the purpose of leading Geomorphoclimatic Instantaneous Unit Hydrograph(GcIUH) by using GIS Techniques, and estimating trigger rainfall for predicting flash flood in Seolmacheon catchment, mountain river watershed. This study leads GcIUH by using GIS techniques, calculates NRCS-CN values for effective rainfall rate, and analyzes 2011 main rainfall events using estimated GcIUH. According to the results, the case of Memorial bridge does not exceed the amount of threshold runoff, however, the case of Sabang bridge shows that simulated peak flow, approximately $149.4m^3/s$, exceeds the threshold runoff. To estimate trigger rainfall, this study determines the depth of 50 year-frequency designed flood amount as a threshold water depth, and estimates trigger rainfall of flash flood in consideration of duration. Hereafter, this study will analyze various flood events, estimate the appropriateness of trigger rainfall as well as threshold runoff through this analysis, and develop prototype of Flash Flood Prediction System which is considered the characteristics of mountain river watershed on the basis of this estimation.

Application of Open Information Model for the Information Management on Building Flood Damage (건물 침수피해 정보관리를 위한 개방형 정보모델의 응용방안)

  • Song, Min Sun;Kim, Min-Su;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2014
  • A systematically structured 3D information model can be effectively utilized in many application fields. This study presents the methodology of generation and application of the city information model, which is suited for the management of the flood damage information. To ensure the interoperability and re-usability of the information, this study develops application methodology to utilize the information attributes included in the CityGML as an open standard data schema and extension methodology for additional information attributes. Also, an effective combining method for topography and building model was proposed. Using the data extracted from the combined information model based on a real flood damage case, it was shown that the numbers of casualties and isolation during a flood can be predicted and as a result, the applicability of the data model on flood damage estimation is naturally verified.

Development of Estimation Technique for Rice Yield Reduction by Inundation Damage (침수피해에 의한 벼 감수량 추정기법 개발)

  • Park , Jong-Min;Kim , Sang-Min;Seong, Chung-Hyun;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.89-98
    • /
    • 2004
  • The amount of rice yield reduction due to inundation should be estimated to analyse economic efficiency of the farmland drainage improvement projects because those projects are generally promoted to mitigate flood inundation damage to rice in Korea. Estimation of rice yield reduction will also provide information on the flood risk performance to farmers. This study presented the relationships between inundated durations and rice yield reduction rates for different rice growth stages from the observed data collected from 1966 to 2000 in Korea, and developed the rice yield reduction estimation model (RYREM). RYREM was applied to the test watershed for estimating the rice yield reduction rates and the amount of expected average annual rice yield reduction by the rainfalls with 48 hours duration, 10, 20, 50, 100, 200 years return periods.

Parameter Estimation and Confidence Limits for the WeibulI Distribution (Weibull 확률분포함수(確率分布函數)의 매개변수(媒介變數) 추정(推定)과 신뢰한계(信賴限界) 유도(誘導))

  • Heo, Jun Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.141-150
    • /
    • 1993
  • For the three parameter Weibull distribution, the parameter estimation techniques are applied and the asymptotic variances of the quantile to obtain the confidence limits for a given return period are derived. Three estimation techniques are used for these purposes: the methods of moments, maximum likelihood and probability weighted moments. The three parameter Weibull distribution as a flood frequency model is applied to actual flood data.

  • PDF