• Title/Summary/Keyword: Flood estimation

Search Result 513, Processing Time 0.019 seconds

Analysis of the Effect of Objective Functions on Hydrologic Model Calibration and Simulation (목적함수에 따른 매개변수 추정 및 수문모형 정확도 비교·분석)

  • Lee, Gi Ha;Yeon, Min Ho;Kim, Young Hun;Jung, Sung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • An automatic optimization technique is used to estimate the optimal parameters of the hydrologic model, and different hydrologic response results can be provided depending on objective functions. In this study, the parameters of the event-based rainfall-runoff model were estimated using various objective functions, the reproducibility of the hydrograph according to the objective functions was evaluated, and appropriate objective functions were proposed. As the rainfall-runoff model, the storage function model(SFM), which is a lumped hydrologic model used for runoff simulation in the current Korean flood forecasting system, was selected. In order to evaluate the reproducibility of the hydrograph for each objective function, 9 rainfall events were selected for the Cheoncheon basin, which is the upstream basin of Yongdam Dam, and widely-used 7 objective functions were selected for parameter estimation of the SFM for each rainfall event. Then, the reproducibility of the simulated hydrograph using the optimal parameter sets based on the different objective functions was analyzed. As a result, RMSE, NSE, and RSR, which include the error square term in the objective function, showed the highest accuracy for all rainfall events except for Event 7. In addition, in the case of PBIAS and VE, which include an error term compared to the observed flow, it also showed relatively stable reproducibility of the hydrograph. However, in the case of MIA, which adjusts parameters sensitive to high flow and low flow simultaneously, the hydrograph reproducibility performance was found to be very low.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

A Proposal for Simplified Velocity Estimation for Practical Applicability (실무 적용성이 용이한 간편 유속 산정식 제안)

  • Tai-Ho Choo;Jong-Cheol Seo; Hyeon-Gu Choi;Kun-Hak Chun
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.75-82
    • /
    • 2023
  • Data for measuring the flow rate of streams are used as important basic data for the development and maintenance of water resources, and many experts are conducting research to make more accurate measurements. Especially, in Korea, monsoon rains and heavy rains are concentrated in summer due to the nature of the climate, so floods occur frequently. Therefore, it is necessary to measure the flow rate most accurately during a flood to predict and prevent flooding. Thus, the U.S. Geological Survey (USGS) introduces 1, 2, 3 point method using a flow meter as one way to measure the average flow rate. However, it is difficult to calculate the average flow rate with the existing 1, 2, 3 point method alone.This paper proposes a new 1, 2, 3 point method formula, which is more accurate, utilizing one probabilistic entropy concept. This is considered to be a highly empirical study that can supplement the limitations of existing measurement methods. Data and Flume data were used in the number of holesman to demonstrate the utility of the proposed formula. As a result of the analysis, in the case of Flume Data, the existing USGS 1 point method compared to the measured value was 7.6% on average, 8.6% on the 2 point method, and 8.1% on the 3 point method. In the case of Coleman Data, the 1 point method showed an average error rate of 5%, the 2 point method 5.6% and the 3 point method 5.3%. On the other hand, the proposed formula using the concept of entropy reduced the error rate by about 60% compared to the existing method, with the Flume Data averaging 4.7% for the 1 point method, 5.7% for the 2 point method, and 5.2% for the 3 point method. In addition, Coleman Data showed an average error of 2.5% in the 1 point method, 3.1% in the 2 point method, and 2.8% in the 3 point method, reducing the error rate by about 50% compared to the existing method.This study can calculate the average flow rate more accurately than the existing 1, 2, 3 point method, which can be useful in many ways, including future river disaster management, design and administration.