• Title/Summary/Keyword: Flood discharge

Search Result 651, Processing Time 0.16 seconds

Estimation of Sediment Discharge Controlled by Sediment-filled Check-dam in a Forested Catchment (산림유역의 만사 사방댐에 의한 토사유출 조절 효과 추정)

  • Seo, Jung Il;Chun, Kun Woo;Song, Dong Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.321-329
    • /
    • 2016
  • To estimate the sediment discharge controlled by sediment-filled check-dam and thereby enhancing factor for check-dam design and dredging criteria, we surveyed slope failures and stream-bed fluctuation caused by geomorphic disturbances (i.e., landslides and debris flows) in Inje, Gangwondo. In general, check-dams play roles for restraining and controlling sediment discharge within a section under the design equilibrium gradient and a section under the design flood gradient, respectively. The results in this study showed same pattern: that is, the closed type check-dam, which has a design restraint sediment discharge of $2,111m^3$, estimated to control a sediment discharge of $3,996m^3$ in the stream section within 250 m right upper area immediately after the disturbances occurred in 2006. As a result, a design control sediment discharge of the check-dam was larger than its design restraint sediment discharge. This represents that the check-dam is still having an own function for controlling sediment discharge although it exceeded the designed capacity by the sediment discharged from upstream during the disturbances. Our finding suggests that the sediment discharge controlling of check-dam may need to be evaluated separately from its sediment discharge restraint. Currently, the country, however, does not consider the design control (or restraint) sediment discharges, based on the actual field survey, as criteria for check-dam design and/or dredging work. Therefore, the accumulation of the quantitative data is required to support that check-dam has functions for both restraining and controlling sediment discharge. This would be a way to develop our erosion control technology to the scientific technology equipped with a more objective and systematic aspects.

Analysis on Looped Stage-Discharge Relation and Its Simulation using the Numerical Model (수치모형을 이용한 고리형 수위-유량 관계 분석)

  • Kim, Ji Sung;Kim, Won;Kim, Dong Gu;Kim, Chi Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.1-9
    • /
    • 2009
  • This study is focused on the analysis of loop characteristics of stage-discharge relation which is widely used for the production of discharge data and the simulation of loop stage-discharge relation using the numerical model. Analysis of consecutive stage and discharge data at 3 points revealed that loop of stage-discharge relationship is very strong. This means that the existing single stage-discharge relation may include large amount of error. Various flood events are simulated in mainstream of Han river with one-dimensional numerical model. The calculated stage data are compared with measured data. Especially continuous field-flow measurements concurrently collected with an Acoustic Doppler Velocity Meter (ADVM) on Hangang bridge in the case of 2007 flood event are used to verify the model applicability of estimating flows in open channels. This comparison shows that numerical model is an accurate and reliable alternative for making the real stage-discharge relation. Simulation of stage-discharge relation by a numerical model at Paldang and Hangang bridge showed good agreements with measured one, so it may be possible to generate real loop stage-discharge relation with properly calibrated and verified numerical model. It can be concluded that results of this study can contribute to error analysis of conventional single stage-discharge relation and development of loop stage-discharge relation with numerical model.

Establishment and Application of Neuro-Fuzzy Real-Time Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (I) : Selection of Optimal Input Data Combinations (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (I) : 최적 입력자료 조합의 선정)

  • Choi, Seung-Yong;Kim, Byung-Hyun;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.523-536
    • /
    • 2011
  • The objective of this study is to develop the data driven model for the flood forecasting that are improved the problems of the existing hydrological model for flood forecasting in medium and small streams. Neuro-Fuzzy flood forecasting model which linked the Takagi-Sugeno fuzzy inference theory with neural network, that can forecast flood only by using the rainfall and flood level and discharge data without using lots of physical data that are necessary in existing hydrological rainfall-runoff model is established. The accuracy of flood forecasting using this model is determined by temporal distribution and number of used rainfall and water level as input data. So first of all, the various combinations of input data were constructed by using rainfall and water level to select optimal input data combination for applying Neuro-Fuzzy flood forecasting model. The forecasting results of each combination are compared and optimal input data combination for real-time flood forecasting is determined.

Effect of Flood Stage by Hydraulic Factors in Han River (수리학적 인자에 의한 한강에서의 홍수위 영향 분석)

  • Lee, Eul-Rae;Kim, Won;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.121-131
    • /
    • 2005
  • In this study, a flood routing model is used for analyzing change of flood stage induced by various factors. The results by using the past cross section measurement data showed the minimum error in case of accurate measurement of cross section as well as reasonable boundary condition of model. In analyzing the rise of flood stage of main stream considering Inflow magnitude of tributary, it showed that the larger the flow magnitude is, the smaller the variance of stage is. The results of analysis in the tidal effect at Wolgot are that the tidal effect influence the stage profile into upstream in case of normal discharge of main stream and tributary but doesn't influence it even with maximum flood tide in case of project flood. Finally, when the various hydraulic factors are considered in numerical analysis, more systematic and realistic flood forecast system is able to be performed.

Flood Forecasting Study using Neural Network Theory and Hydraulic Routing (신경망 이론과 수리학적 홍수추적에 의한 홍수예측에 관한 연구)

  • Jee, Hong Kee;Choo, Yeon Moon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.207-221
    • /
    • 2014
  • Recently, due to global warming, climate change has affected short time concentrated local rain and unexpected heavy rain which is increasingly causing life and property damage. Therefore, this paper studies the characteristic of localized heavy rain and flash flood in Nakdong basin study area by applying Data Mining method to predict flood and constructing water level predicting model. For the verification neural network from Data Mining method and hydraulic flood routing was used for flood from July 1989 to September 1999 in Nakdong point and Iseon point was used to compare flood level change between observed water level and SAM (Slope Area Method). In this research, the study area was divided into three cases in which each point's flood discharge, water level was considered to construct the model for hydraulic flood routing and neural network based on artificial intelligence which can be made from simple input data used for comparison analysis and comparison evaluation according to actual water level and from the model.

Flood Routing Using Numerical Analysis Model (수치해석모형에 의한 홍수추적)

  • 이용직;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.117-130
    • /
    • 1989
  • In this study, an implicit one-dimensional model, DWRM(Dynamic Wave Routing Model) was developed by using the four-point weighted difference method. By applying the developed model to the Keum River, the parameters were calibrated and the model applicability was tested through the comparison between observed and computed water levels. In addition, the effects of the construction of an estuary dam to the flood wave were estimated as a result of the model application. The results of the study can be summarized as follows; 1. The roughness coefficients were evaluated by comparison between observed and computed water level at Jindu, Gyuam and Ganggyeung station in 1985. The Root Mean Squares for water level differences between observed and computed values were 0.10, 0.11, 0. 29m and the differences of peak flood levels were 0.07, 0.02, 0. 07m at each station. Since the evaluated roughness coefficients were within the range of 0.029-0.041 showing the realistic value for the general condition of rivers, it can be concluded that the calibration has been completed. 2. By the application of model using the calibrated roughness coefficients, the R. M. S. for water level differences were 0.16, 0.24, 0. 24m and the differences of peak flood level were 0.17, 0.13,0.08 m at each station. The arrival time of peak flood at each station and the stage-discharge relationship at Gongju station agreed well with the observed values. Therefore, it was concluded that the model could be applied to the Keum River. 3. The model was applied under conditions before and after the construction of the estuary dam. The 50-year frequency flood which had 7, 800m$^3$/sec of peak flood was used as the upstream condition, and the spring tide and the neap tide were used as the downstream condition. As the results of the application, no change of the peak flood level was showed in the upper reaches of 19.2km upstream from the estuary dam. For areas near 9.6km upstream from the estuary dam, the change of the peak flood level under the condition before and after the construction was 0. 2m. However considering the assumptions for the boundary conditions of downstream, the change of peak flood level would be decreased.

  • PDF

The optimal operation of reservoir systems during flood season (홍수기 저수지의 최적연계운영)

  • Han, Kun-Yeun;Choi, Hyun-Gu;Kim, Dong-Il;Lee, Kyeong-Teak
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.743-746
    • /
    • 2008
  • Recently, due to the effect of global warming and extreme rainfall, the magnitude of flood disaster and the frequency of flood is rapidly increasing. In order to mitigate the damage of human and property from this kind of meteorological phenomenon and manage water resources scientifically, effective operation of dam and reservoir is very important. In case of Andong dam which was not performed a flood control function needs to develop new types of dam safety management measure because of recent extraordinary flood by typhoons. In case of Andong dam and Imha dam, I am using HEC-5 model in order to apply reservoir simulation. In this case, complex conditions among 100-year floods , 200-year floods and PMF was used. Also, I modified the maximum outflow 3,800m3/s into 3,490m3/s and applied this modified discharge in order to secure freeboard in the downstream. In an analysis that I applied modified outflow by 100-year floods and 200-year floods to, the result showed that river didn't overflow in Andong area but some other places have relatively low freeboard. In the cases that I modified maximum outflow, results showed that freeboard of levee is larger than existed simulation. In the simulation that I applied 200-year floods and PMF to and under a condition connected with PMF, results showed overflowing the levees. Because of the difference between the frequency of dam outflow and the design flood in river, it is required to improve the existed flood plan in the downstream of Andong dam. As a result of this study, the optimal operation of reservoir systems can be proposed to mitigate the flood damage in the downstream of Andong dam and also can be used to establish the flood plans.

  • PDF

Flood stage analysis considering the uncertainty of roughness coefficients and discharge for Cheongmicheon watershed (조도계수와 유량의 불확실성을 고려한 청미천 유역의 홍수위 해석)

  • Shin, Sat-Byeol;Park, Jihoon;Song, Jung-Hun;Kang, Moon Seong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.661-671
    • /
    • 2017
  • The objective of this study was to analyze the flood stage considering the uncertainty caused by the river roughness coefficients and discharge. The methodology of this study involved the GLUE (Generalized Likelihood Uncertainty Estimation) to quantify the uncertainty bounds applying three different storm events. The uncertainty range of the roughness was 0.025~0.040. In case of discharge, the uncertainty stemmed from parameters in stage-discharge rating curve, if h represents stage for discharge Q, which can be written as $Q=A(h-B)^C$. Parameters in rating curve (A, B and C) were estimated by non-linear regression model and assumed by t distribution. The range of parameters in rating curve was 5.138~18.442 for A, -0.524~0.104 for B and 2.427~2.924 for C. By sampling 10,000 parameter sets, Monte Carlo simulations were performed. The simulated stage value was represented by 95% confidence interval. In storm event 1~3, the average bound was 0.39 m, 0.83 m and 0.96 m, respectively. The peak bound was 0.52 m, 1.36 m and 1.75 m, respectively. The recurrence year of each storm event applying the frequency analysis was 1-year, 10-year and 25-year, respectively.

A Study on the Outlet Drain Discharge from Paddy Field (논의 배수물꼬의 유량에 관한 기초연구)

  • 최진규;김현영;손재권
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.134-142
    • /
    • 1997
  • This study was performed to evaluate the drain runoff characteristics from one paddy field, and to provide the basic data required for the determination of flood discharge and unit drainage water for drainage improvement and farmland consolidation. For this purpose, under the assumption that drain discharge from paddy field was similar to outflow of reservoir, runoff model based on storage equation was applied to the experimental field, and simulated results were compared to the measured discharge at weir point. To estimate effective storage volume of paddy field with water depth, 4 regression formula were examined such as linear, exponential, power, and combined. From the observed runoff characteristics, it was shown to be 3.3~16.3${\ell}$/sec in weir discharge, 57.2~98% in runoff ratio, and relative error of simulated result was 3.0~39.4%, 8.5 ~56.0 % for peak flow and runoff ratio, respectively. Curve number by SCS method was calculated as mean value of 96.4 using measured rainfall and runoff data, it was considered relatively high because paddy field has generally flooding depth contrary to the upland watershed area.

  • PDF

Anlaysis of Design flood in a relation to Changing Characteristics of Area by using HEC-1 Model (HEC-1 모형의 유역특성변화에 따른 설계 홍수량의 비교 분석)

  • 김선주;김필식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.537-543
    • /
    • 1999
  • While there are to estimating design discharge , we are in trouble with how to separate area, Because discharges will be different depending on the shape of area even though there are same size of area . This study is for a reasonable presentation of design discharge method where there are changing characteristcs of area with SCS and Clark theory by sung HEC-1 Model. While we were Estimating desgin discharge with separating area in a relation to Time of Concentration(Tc) with SCS , Clark method, we found that if there are no variation of Tc the value of a discharge is not changed where shapes of area are different though. And from the result of analysis with SCS and Clark method, we ascertained that discharge by the SCS method was more bigger than that of the Clark where Area is less than 100ha. On the other hand, Clark method is more bigger in the more 1000ha.

  • PDF