• Title/Summary/Keyword: Flood damage analysis

Search Result 383, Processing Time 0.021 seconds

Flood Inundation Analysis using XP-SWMM Model in Urban Area (XP-SWMM 모형을 적용한 도시지역의 침수해석)

  • Lee, Jong-Hyeong;Yeon, Kee-Seuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.155-161
    • /
    • 2008
  • The flood damage shows different types in natural river watershed and in urban drainage watershed. In recent, increasing of the impervious area gives rise to short concentration time and high peak discharge comparing with natural watershed and it is a cause of urban flood damage. In this paper, we use a XP-SWMM model developed based on EPA-SWMM version for analyzing the inundation area, inundation depth and inundation area considering building effect. The two events(2005.06, 2005.07) has been used for the validation of model. HEC-RAS model has been applied for simulation of changing water level, and the results has been used for calculating area of the inundation. The observed inundation area(21.41 ha) in August, 1998 was in good agreement with the simulated value(23.45 ha) of XPSWMM model. An influence of inundation area considering building effects has been analized by the DTM of XP-SWMM model.

Analysis of Optimal Evacuation Route for Flood Disaster (홍수재난에 대한 최적 대피경로 분석)

  • Kim, Kyong-Hoon;Park, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.169-177
    • /
    • 2018
  • There is a lot of loss of life due to natural disasters. In particular, flood damage caused by heavy rainfall in urban areas causes serious damage. Therefore, in this study, we conducted a study on the optimal evacuation route for safe evacuation of urban areas. We set up a methodology by reviewing Flo-2D model and A* algorithm. A Flo-2D model was used to derive the hazardous area, and we selected the starting points with many people and suggested ways to select safe evacuation sites. And the route was derived from the starting point to the safe evacuation point by using the A * algorithm. This study could be used not only for evacuation route but also for road maintenance and evacuation facilities.

A Study on Flood Analysis for Reducing the Flood Damage in Urban Area (도시지역 침수저감을 위한 수리 및 침수분석에 대한 연구)

  • Kang, Doo-Kee;Park, Jae-Beom;Shin, Dong-Soo;Shin, Hyun-Suk;Jang, Jong-Kyung;Jo, Deok-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.279-282
    • /
    • 2011
  • 최근 기후변화에 의한 기상현상은 국지성 집중호우, 돌발홍수 등을 발생시켜 많은 인명과 재산의 피해를 가져오고 있다. 특히, 도시집중 현상으로 택지 및 시설부지의 부족현상이 가중됨으로써 하천범람 구역이나 홍수우려가 있는 저지대까지 도시화가 이루어짐으로써 치수상 안전도가 상대적으로 저하되고 있는 한편, 도시유역에서의 집중호우로 인한 홍수피해는 다른 지역에 비해 상대적으로 피해규모가 증대되고 있다. 또한, 최근 도시지역에 홍수피해를 유발하고 있는 강우의 특징은 단시간에 많은 강우가 집중하여 발생하는 국지성 집중 호우로 침수피해를 가중시키는 경향이 있으므로 배수시설 설계 시 이러한 강우의 특성과 도시유출 특성에 대한 고려가 필요하다. 이에 본 연구에서는 최근 침수가 잦은 부산 센텀지구를 대상으로 모형을 구축하여 기존배수체계의 배수능력을 초과하는 집중호우 발생 시 침수피해를 저감하기 위한 지하저류조의 용량을 산정하였다.

  • PDF

Flood fragility analysis of bridge piers in consideration of debris impacts (부유물 충돌을 고려한 교각의 홍수 취약도 해석 기법)

  • Kim, Hyunjun;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • This research developed a flood fragility curve of bridges considering the debris impacts. Damage and failures of civil infrastructure due to natural disasters can cause casualties as well as social and economic losses. Fragility analysis is an effective tool to help better understand the vulnerability of a structure to possible extreme events, such as earthquakes and floods. In particular, flood-induced failures of bridges are relatively common in Korea, because of the mountainous regions and summer concentrated rainfall. The main failure reasons during floods are reported to be debris impact and scour; however, research regarding debris impacts is considered challenging due to various uncertainties that affect the failure probability. This study introduces a fragility analysis methodology for evaluating the structural vulnerability due to debris impacts during floods. The proposed method describes how the essential components in fragility analysis are considered, including limit-state function, intensity measure of the debris impact, and finite element model. A numerical example of the proposed fragility analysis is presented using a bridge pier system under a debris impact.

Development of a integrated platform for urban river management (도시하천관리를 위한 연계플랫폼 개발)

  • Koo, Bonhyun;Oh, Seunguk;Koo, Jaseob;Shim, Kyucheoul
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.471-480
    • /
    • 2022
  • In this study, a integrated platform applied with various analysis and evaluation models and data collection modules was developed for urban river management. Modules applied to the integrated platform are data collection and provision module, flood analysis module, river evaluation module, and levee breach simulation module, which were selected and applied for efficient urban river management. The integrated platform collects data for application to analysis and evaluation modules from various institutions. The collected data is refined through pre-processing and stored. The stored data is used as input data for each module and is also provided as an Open API through the platform. The flood analysis module is provided to analyze and prepare for floods occurring in cities and rivers. The river evaluation module is used for river planning and management by evaluating rivers in various ways. Finally, the levee breach simulation module can be used to establish countermeasures by deriving a possible damage area due to levee breach through analysis of a virtual breach situation.

Study on Propriety Evaluation for Protection of Rock Revetment (석축호안 보호공의 적정성 평가에 대한 연구)

  • Park, Moo-Jong;Choi, Sung-Wook;Baek, Chun-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.111-117
    • /
    • 2008
  • Recent climate changes have increased flood damage on bank and revetment. However design standard for revetment that is the one of the most important facility for flood protection is not enough in Korea. In this study, destruction of rock revetment in Guryecity caused by the flood on Aug 2007 was inquired by analysis using 2D hydraulic simulation model SMS and the propriety of established plan for protection of rock revetment was evaluated. For this purpose, the ranges of protection facility for revetment was calculated by two methods. The one is normal method to calculate range of pier scour protection facility, and the other is a method of the standard for river design in Korea. The results of both methods are compared to evaluate the established plan.

Damage Degree Valuation of Forest Using NDVI from Near Infrared CCD Camera and Spectral Radiometer in a Forest Fire Area (근적외 CCD카메라와 분광반사계의 식생지수를 이용한 산불 발생지역에서의 산림 피해도 평가)

  • Choi, Seung-Pil;Kim, Dong-Hee;Park, Jong-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.367-374
    • /
    • 2005
  • Recently, forest damage has occurred often and made big issues. Among them, the damage by forest fire is not only damage of itself but also being connected with secondary damage like a flood. This is the fact that a forest fire is caused rather artificially by people than nature. In this study, we try to investigate damage of a forest fire through spectral reflectance of a plant community surveyed using a near infrared CCD camera and a SPM (Spectral Radiometer) as advanced work to use satellite image data. That is, damage of a forest fire by the naked eye observation was divided into the No damage, the light damage, the serious damage and we estimated activity of forest and grasped revival possibility of forest. Through correlation analysis between the spectral reflectance by SPM and the near infrared CCD camera, we could get high correlation in the No damage and light damage. Therefore, when we surveyed damage of a forest fire, we could grasp damage, that is hardly observed by the naked eye by, using jointly the spectral radiometer and the near infrared CCD camera.

A Study on the Stability Analysis of the Bank Revetment at Urban Streams in Flood Times (홍수시 도시하천의 호안 안정성 분석에 관한 연구)

  • Kim, Chul;Park, Nam-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.139-145
    • /
    • 2010
  • Recently, close-to-nature stream improvement works have been carried out in urban streams, where eco-friendly bank revetment methods have been adopted. These bank revetment methods are vulnerable to be damaged or washed away by floods compared to the traditional methods which use concrete materials. Damage analysis methods on the urban streams by the floods of severe rain storm are presented. The analysis methods are the graph-using method and the grid method, which are derived from the survey results at Gwangju stream. Damage analysis grid which is intersected velocity grid and material strength grid is the highest correlation with the damage survey grid. The biggest damage on the bank revetments have been occurred around the crossing structures. Big damages have also been occurred in the connection of low water revetment and the terrace land, and around the structures in the terrace land of the stream.

Implementation Method of Insurance Object GIS DB for the Storm and Flood Hazard Risks Premium Rate Mapping (풍수해보험 관리지도를 위한 보험 목적물 GIS DB 구축)

  • Lee, Jun-Seok;Lee, In-Su
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.87-100
    • /
    • 2015
  • Currently, Korea government has strongly recommended the storm and flood insurance system to reduce the damage caused by natural disasters. The storm and flood insurance operated by private insurance company is the type of policy insurance. and is supervised by Minister of Public Safety and Security. It is the advanced disaster management system which is able to protect the public interests through unexpected natural disaster by assisting some part of the insurance premium from a central or local government. The main purpose of the present investigation is to build the insurance object GIS DB which should be necessary to calculate the premium rate in the map for storm and flood insurance, and also, to perform GIS analysis. The service model in this study is aimed to general single house, apartment and green house. The service management plan targeting the whole country has been investigated in terms of building DB and service operation.

Analysis on the Effects of Flood Damage Mitigation according to Installation of Underground Storage Facility (지하저류조 설치에 따른 침수피해 저감효과 분석)

  • Kim, Young Joo;Han, Kun Yeun;Cho, Wan Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.41-51
    • /
    • 2010
  • In this study, runoff simulation was carried out in the area of Bisan 7-dong, Seo-gu, Daegu as drainage basin and the effects of the installation of underground storage facilities were analyzed during heavy rainfall. SWMM model was used for the runoff and pipe network analysis on Typhoon Maemi, 2003. 2-D inundation analysis model based on diffusion wave was employed for inundation analysis and to verify computed inundation areas with observed inundation trace map. The simulation results agree with observed in terms of inundation area and depth. Also, the effects of flood damage mitigation were analyzed through the overflow discharge and 2-D inundation analysis, depending upon whether the underground storage facility is installed or not. When the underground storage facility ($W:120m{\times}L:180m{\times}H:1.7m$) is installed, volume of overflow could be reduced by 72% and flooding area could be reduced by 40.1%. When the underground storage facility ($W:120m{\times}L:180 m{\times}H:2.0m$) is installed, volume of overflow could be reduced by 84.8% and flooding area could be reduced by 50.6%. When the underground storage facility ($W:120m{\times}L:180m{\times}H:2.2m$) is installed, volume of overflow could be reduced by 94% and flooding area could be reduced by 91.2%. There is no overflow of manhole, when the height of storage facility is 2.5 m. It is expected that the study results presented through quantitative analysis on the effects of underground facilities can be used as base data for socially and economically effective installation of underground facilities to prevent flood damage.