• Title/Summary/Keyword: Flood Prevention

Search Result 358, Processing Time 0.024 seconds

Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (II): Application and Analysis (위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (II): 적용 및 분석)

  • Choi, Hyuk Joon;Han, Kun Yeun;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.605-612
    • /
    • 2006
  • In this study(II), The developed rainfall forecast model was applied to the NakDong River Basin for the heavy rainfall on 6th to 16th of August in 2002. The results demonstrated that the rainfall forecasts of 3 hours lead time showed good agreement with observed data. The inundation aspect of simulation depends on actual levee failure in the same basin. Rainfall forecasts were used for flood amount computation in the target watershed. Also the flood amount in the target watershed was used on boundary condition for flood inundation simulation in a protected lowland and a river. The results of simulation are consistent with actuality inundation traces and flood level data of the target watershed. This study provides practical applicability of satellite data in rainfall forecast of extreme events such as heavy rainfall or typhoon. Also this study presented an advanced integrated model of rainfall, runoff, and inundation analysis which can be applicable for flood disaster prevention and mitigation.

Strategy for Enhancing Flood Control Capacity of Seomjin River Basin Using Both Structural and Non-structural Measures (구조적 및 비구조적 대책을 결합한 섬진강유역 홍수조절능력 제고 방안)

  • Lee, Dong Yeol;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.683-694
    • /
    • 2024
  • Flood control capacity enhancement measures in watersheds can be broadly categorized into structural and non-structural approaches. In this study, we propose the improvement of the flood control capacity in the Seomjin River basin through non-structural measures by optimizing the operation of the Seomjin River Dam, specifically by introducing a flexible flood season restricted water level (FSRWL). The flexible operation of FSRWL involves setting lower restricted water levels at the beginning of the flood season to increase flood control capacity and gradually raising them as the season progresses to manage flood control more effectively. As a structural measure, we examined the installation of riverside storage areas, a representative technique of nature-based solutions (NbS). Using the 2020 flood event as a case study, we analyzed the flood level reduction effects of implementing structural and non-structural measures both separately and simultaneously to identify the most effective and economical approach. The results indicate that the optimal flood prevention strategy for the main stream of the Seomjin River during the 2020 flood event involves operating the Seomjin River Dam FSRWL at EL. 190 m during the mid-flood season as a non-structural measure and installing a riverside storage area downstream of Godalgyo Bridge in Daepyeong-ri, Gokseong-gun as a structural measure.

A Case Study on the Housing Development by Using the Space of Retarding Basin - Focused on the Tetsugakudo Kouen Collective Housing Development Project - (유수지 공간을 활용한 주거지개발 사례연구 -일본 철학당 공원(테츠가쿠도 코우엔) 주거단지 사례를 중심으로-)

  • Baek, Seung-Kwan;Kim, Young-Hoon
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2015
  • The purpose of this study is to analyze the Tetsugakudo Kouen Collective Housing Development Project in Japan. Project implemented cooperatively by the Tokyo Metropolitan Government in charge of river management, Shinjuku and Nakano-ku responsible for park management, and the UR, a housing project developer. This project set a significant precedent for three-dimensional river use by realizing the three-dimensional integrated development of a flood control reservoir, a park, and collective housing. The major effectiveness of this project can be summarized into four points. 1) The costs borne by individual project developers were significantly reduced by realizing a high degree of application and multipurpose use of the land through a joint project. 2) This project, which was designed to accommodate rainfall of 30 to 40mm per hour, is expected to contribute to reducing flood damage and generating significant investment effects, in terms of asset value in downstream areas, thereby increasing flood control security. 3) Local disaster prevention function were enhanced by providing an evacuation site in the case of an earthquake. 4) The living environment was improved by adding the function of a park.

Development and Verification of Inundation Model Considering Storm Sewers in Urban Area (도시배수체계와 연계한 침수모형의 개발 및 검증)

  • Han, Kun-Yeun;Lee, Chang-Hee;Kim, Ji-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.159-162
    • /
    • 2005
  • Urban flooding is usually caused by the surcharge of storm sewers. For that reason, domestic studies about urban flooding are concentrated on the simulation of urban drainage system. However these approaches that find the pipes which have insufficient drainage capacity are very approximate and unreasonable ways. In this study, an accurate mathematical modeling is developed to analyze the impacts of an urban inundation for both flood prevention and flood-loss reduction planning and it is verified by using the simulation of July 2001 flooding in Seoul. The result of this study can be used to construct fundamental data for a flood control plan and establish a urban flood forecasting/warning system.

  • PDF

Flood Characteristics at Nakdong Estuary with 1 Dimensional Unsteady Model (1차원 부정류 모형을 활용한 낙동강 하류의 홍수 특성)

  • Lee, Sang-jin;Shin, Hyun-Ho;Kim, Joo-Cheol;Hwang, Man-Ha
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.149-155
    • /
    • 2010
  • Rainfalls would increase the discharges or stages of tributary channels in natural watersheds, which in turn augment the magnitude of main stream stages. Rising of water surface elevation in main streams can affect and damage the human activities because of the possibilities of the breakdown or overflow of the embankment. Therefore it is necessary to establish the structural or non-structural alternatives for the sake of prevention or treatment of those disasters. Many mathematical models to analyze the flood flows in natural watercourses have been proposed as the non-structural alternatives so far. In this study one of the such models, FLDWAV developed by NWS(National weather Service), is applied to the downstream reach of Nakdong river. Model calibration is performed on various Manning's roughness coefficients at the gauging stations. The simulation results are compared well with hydrological estimations of flood discharges considering the effects of multipurpose dams upstream of control points.

A Study on Inundation Analysis Considering Inland and River Flood (내수 및 외수영향을 고려한 침수해석에 관한 연구)

  • Cho, Wan-Hee;Han, Kun-Yeun;Kim, Hyeon-Sik;Kim, Jin-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.74-89
    • /
    • 2015
  • The objective of this study is to present countermeasures for mitigation of flood damage with inundation analysis considering the effect of inland and river flood and prediction of flood inundation area, depth and time against emergencies caused by abnormal flood and local torrential rainfall. In this study, 2-D inundation analysis was fulfilled on the basis of river flood analysis applying to HEC-HMS and FLDWAV model and inundation analysis applying to SWMM model for the area of Shineum-dong, Gimcheon-si. Also expected inundation depth and area about probable rainfall of 100 and 200 years frequency were suggested. If expected inundation depth and flooding area is presented on the basis of this inundation analysis considering the effect of inland and river flood, it would be an important preliminary data to establish structural and nonstructural countermeasures for flood prevention. Also if flood risk map is prepared based on the result of inundation analysis, it would be useful to evacuate residents in high-risk area and regulate road and vehicle.

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

A Study on the Flood Reduction in Eco-Delta City in Busan using Observation Rainfall and Flood Modelling (관측 강우와 침수모의를 이용한 부산 에코델타시티 수해저감에 관한 연구)

  • Kim, YoonKu;Kim, SeongRyul;Jeon, HaeSeong;Choo, YeonMoon
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.187-193
    • /
    • 2020
  • The increase in the area of impervious water due to the recent abnormal weather conditions and rapid urbanization led to a decrease in the amount of low current, resulting in an increase in the amount of surface runoff. Increased surface runoff is causing erosion, destruction of underwater ecosystems, human and property damage in urban areas due to flooding of urban river. The damage has been increasing in Korea recently due to localized heavy rains, typhoons and floods. As a countermeasure, the Busan Metropolitan Government will proceed with the creation of the Eco-Delta City waterfront zone in Busan with the aim of creating a future-oriented waterfront city from 2012 to 2023. Therefore, the current urban river conditions and precipitation data were collected by utilizing SWMM developed by the Environment Protection Agency, and the target basin was selected to simulate flood damage. Measures to reduce flood damage in various cases were proposed using simulated data. It is a method to establish a disaster prevention plan for each case by establishing scenario for measures to reduce flood damage. Considering structural and non-structural measures by performing an analysis of the drainage door with a 30-year frequency of 80 minutes duration, the expansion effect of the drainage pump station is considered to be greater than that of the expansion of the drainage door, and 8 scenarios and corresponding alternatives were planned in combination with the pre-excluding method, which is a non-structural disaster prevention measure. As a result of the evaluation of each alternative, it was determined that 100㎥/s of the pump station expansion and the pre-excluding EL.(-)1.5m were the best alternatives.

The development of design-width prediction equation by using 12 local governments data collected from small stream of Korea (국내 12개 시·도 자료를 이용한 소하천 계획하폭 산정식 개발)

  • Choi, Changwon;Cheong, Tae Sung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.185-194
    • /
    • 2023
  • There are more than 22,300 small streams distributed nationwide in Korea, and they have various runoff characteristics depending on basin area, topography and land use. For small stream disaster management, establishing detailed design standards suitable for the small streams is important, but most of the formulas currently proposed in the small stream design standard are based on the river design standard aimed at national and local rivers or foreign river design standards. The design-width is an important factor in determining the size of the stream. It is determined by using design-flood discharges or more variables such as design-flood discharges, basin area, slop, etc in the small stream design standard. This study collected various characteristics information such as the design-flood discharges, basin area, river length and river slop, and design-width values from 4,073 small streams distributed in 12 cities and provinces in Korea to suggest the appropriated design-width formula. This study developed two design-width formulas by using the regression analysis which one is using the design-flood discharges and the other is using various variables such as the design-flood discharges, basin area, river length and river slope collected from the small steams. It is expected that both equations developed in here can be used for small stream disaster management, such as improving small stream design standard or establishing a comprehensive small stream maintenance plan.

Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.537-551
    • /
    • 2011
  • Based on optimal input data combination selected in the earlier study, Neuro-Fuzzy flood forecasting model linked Takagi-Sugeno fuzzy inference theory with neural network in Wangsukcheon and Gabcheon is established. The established model was applied to Wangsukcheon and Gabcheon and water levels for lead time of 0.5 hr, 1 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr are forecasted. For the verification of the model, the comparisons between forecasting floods and observation data are presented. The forecasted results have shown good agreements with observed data. Additionally to evaluate quantitatively for applicability of the model, various statistical errors such as Root Mean Square Error are calculated. As a result of the flood forecasting can be simulated successfully without large errors in all statistical error. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.