• Title/Summary/Keyword: Flood Level

Search Result 755, Processing Time 0.024 seconds

Analyzing the Flood Inundation in Low Agricultural Area (저지대 농경지의 홍수범람 분석)

  • Jun, Kye-Won;Lee, Ho-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.17-24
    • /
    • 2007
  • This study analyzes the flood inundation in low agricultural area caused by rainfall during typhoon periods and how flood inundation areas should be affected. GIS techniques, HEC-HMS and HEC-GeoHMS were used for flood runoff, HEC-RAS was applied in water surface elevation analysis at each cross-section. RMA2, SED2D were applied for runoff characteristics of inundation areas and river bed change and distribution of sediment. As a result, velocity distribution was analyzed 2.6 m/s-3.4 m/s in flood inundation by water level increase. In the case of bed elevation change, most sediments were deposited to the parts that adjoin bank.

Real-time Flood Forecasting Model for Irrigation Reservoir Using Simplex Method (최적화기법에 의한 관개저수지의 실시간 홍수예측모형)

  • 문종필;김태철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.85-93
    • /
    • 2001
  • The basic concept of the model is to minimize the error range between forecasted flood inflow and actual flood inflow, and forecast accurately the flood discharge some hours in advance depending on the concentration time(Tc) and soil moisture retention storage(Sa). Simplex method that is a multi-level optimization technique was used to search for the determination of the best parameters of RETFLO (REal-Time FLOod forecasting) model. The flood forecasting model developed was applied to several strom event of Yedang reservoir during past 10 years. Model perfomance was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF

Real-time Flood Forecasting Model for Irrigation Reservoir Using Simplex Method (최적화기법을 이용한 관개저수지의 실시간 홍수예측모형(수공))

  • 문종필;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.390-396
    • /
    • 2000
  • The basic concept of the model is minimizing the error range between forecasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time(Tc) and soil moisture retention storage(Sa). Simplex method that is a multi-level optimization technique was used to search for the determination of the best parameters of RETFLO (REal-Time FLOod forecasting)model. The flood forecasting model developed was applied to several strom events of Yedang reservoir during past 10 years. Model perfomance was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF

Forecasting Model for Flood Risk at Bo Region (보 지역 홍수 위험도 예측모형 연구)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.91-95
    • /
    • 2014
  • During a flood season, Bo region could be easily exposed to flood due to increase of ground water level and the water drain difficulty even the water amount of Bo can be managed. GFI for the flood risk is measured by mean depth to water during a dry season and minimum depth to water and tangent degree during a flood season. In this paper, a forecasting model of the target variable, GFI and predictors as differences of height between ground water and Bo water, distances from water resource, and soil characteristics are obtained for the dry season of 2012 and the flood season of 2012 with empirical data of Gangjungbo and Hamanbo. Obtained forecasting model would be used for keep the value of GFI below the maximum allowance for no flooding during flooding seasons with controlling the values of significant predictors.

A Study on the Cross Section Insurance to Provide for the Extraordinary Flood for the Reservoir of the Temporary Division Tunnel (가배수 터널을 이용한 이상홍수 대비 단면확보에 관한 연구)

  • Baek, Won-Hyun;Park, Ki-Bum;Jee, Hong-Kee
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.733-741
    • /
    • 2008
  • The object of this study is the safety insurance of the dam to provide for the extraordinary flood. The safety insurance of the reservoir was taken by the preparatory discharge using the temporary division tunnel used during the reservoir construction. In this study, the Sungju reservoir was simulated. The existing discharge facilities of the intake tower of the Sungju reservoir could nat have influence on the flood control. When the Sungju reservoir operated to begin preparatory discharge for 48 hrs by the temporary diversion tunnel that have discharge of an 20-years frequency, the water level was lowered about 20 cm. When the Sungju reservoir operated to begin the continuous discharge after the preparatory discharge, the water level was lowered over 1m but the downstream at risk was caused by the resulted. If it is possible to operate to begin the preparatory discharge of the reservoir for 24 hrs by the temporary diversion tunnel, that will improve the flood control faculty of the reservoir without other hydraulic structure and safety of the Sungju reservoir will be higher.

An Analysis of Hydraulic Effect due to the Outflow of Paldang Dam at Hangang Parks (팔당댐 방류량에 따른 한강 시민공원의 수리학적 영향 분석)

  • Lee, Jae-Joon;Kwak, Chang-Jae;Lee, Sang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.101-111
    • /
    • 2008
  • Hangang Parks have been played an important role as the source of various Civilian activities by providing a natural space near Han River ever since it was developed. Due to the local-heavy rain caused by recent climate change, the Hangang Parks tends to be easily overflowed. Evacuation of the park in emergency and its controlled system should be made for the sake of Civilian's safety. In this study, various basic data and several parameters were analyzed to simulate the hydraulic effect of Hangang Parks based on the outflow in $P1/4{\div}1/4^3$ Dam. Rising effects of flood water level were investigated through the one-dimensional and twodimensional numerical hydraulic models. Relationships of water level and travel time of flood between key station and centeral part of each park were also identified. It can be used to forecast the future flood water level of each individual park in Hangang Parks. Obtained results can be used to establish the rational plan of usage, management, citizen's safety, and emergency action plan of the Hangang Parks as the flood is occurred from the outflow of Paldang dam.

Reservoir Operation at Flood Time by Transformed Reservoir Flood(TRF) Reservoir Operation Method(ROM) (저수지 홍수변환법에 의한 홍수시 저수지 운영)

  • Gwon, O-Ik;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.105-113
    • /
    • 1998
  • Reservoir operation during flood period can be divided into two parts: One is for an operating policy during flood period to consider water conservation and flood control, and the other is for flood time on a random water level at flood forecasting, This study is concerned with reservoir operation and discusses general reservoir operation at flood time. Flood control has problems such as the uncertainty of hydrologic models. technical limitations and some constraints. Therefore, we may prepare the quantitative flood control methods based on the assured flood control storage for reservoir operation. Transformed Reservoir Flood(TRF) Reservoir Operation Method(ROM) is a procedure which determines the adequate releases with considering dam safety for flood inflows over non-damaging discharge. Based on the TRF ROM which was explained in our published paper. the study discusses the TRF ROM with additional investigations and the general reservoir operation rules at flood time.

  • PDF

Optimal Reservoir Operation Using Goal Programming for Flood Season (Goal Programming을 이용한 홍수기 저수지 최적 운영)

  • Kim, Hye-Jin;Ahn, Jae-Hwang;Choi, Chang-Won;Yi, Jae-Eung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • The purpose of multipurpose reservoir operation in flood season is to reduce the peak flood at a control point by utilizing flood control storage or to minimize flood damage by controlling release and release time. Therefore, the most important thing in reservoir operation for flood season is to determine the optimal release and release time. In this study, goal programming is used for the optimal reservoir operation in flood season. The goal programming minimizes a sum of deviation from the target value using linear programming or nonlinear programming to obtain the optimal alternative for the problem with more than two objectives. To analyze the applicability of goal programming, the historical storm data are utilized. The goal programming is applied to the reservoir system operation as well as single reservoir operation. Chungju reservoir is selected for single reservoir operation and Andong and Imha reservoirs are selected for reservoir system operation. The result of goal programming is compared with that of HEC-5. As a result, it was found that goal programming could maintain the reservoir level within flood control level at the end of a flood season and also maintain flood discharge within a design flood at a control point for each time step. The goal programming operation is different from the real operation in the sense that all inflows are assumed to be given in advance. However, flood at a control point can be reduced by calculating the optimal release and optimal release time using suitable constraints and flood forecasting system.

Numerical Analysis in Hydrograph Determination for Sluice Gate installed Levee (배수통문이 설치된 제방의 설계수위파형결정에 관한 수치해석)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • According to national regulations and its commentary, such as Rivers Design Criteria & Commentary (KWRA, 2009), Foundation Structure Guideline and its Commentary(MLTM, 2014 and KGS, 2009), the integrity evaluation of river levee includes slope stability evaluation of both riverside/protected low-land and piping stability evaluation with respect to foundation and levee body along with water level conditions. In this case the design hydro-graph can be the most important input factor for the integrity evaluation, however it is fact that the national regulations do not provide any proper determination methods regarding hydro-graph. The authors thus executed an integrity evaluation of sluice gate in levee by changing each hydro-graph factor, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency, in order to suggest a determination method of reasonable hydro-graph. As a result, the authors suggested that at least over 57 hours of rising ordinary water level and over 53 hours of lasting flood water level should be considered for the design hydro-graph of sluice gate in levee at Mun-san-jae.

Numerical Analysis of Hydrograph Determination for Cohesive Soil Levee (조립토 하천제방의 수위파형결정에 관한 수치해석적 연구)

  • Kim, Jin-Man;Kim, Ji-Sung;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.81-92
    • /
    • 2014
  • The integrity evaluation of river levee includes slope stability evaluation of riverside land and protected low-land, and safety of piping with respect to critical gradient and critical velocity based on related regulations, such as Design Criteria Rivers Commentary (2009), Structural Design Criteria Based Commentary (2009). The design hydro-graph is the most important design input factor for the integrity evaluation; it can be inaccurate due to the absence of its decision methods suggested by the national level. The authors in this paper evaluated numerical analytic levee integrity for piping and slope stability by changing each design hydro-graph, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency for Mun-san-jae on Nak-dong River. Finally, the authors suggested that the levee integrity of piping and slope stability are very sensitive to the changes of increasing time of ordinary water level by 57 hours and lasting time of the flood water level by 53 hours, respectively, for Mun-san-jae.