• Title/Summary/Keyword: Flood Frequency Curve

Search Result 43, Processing Time 0.035 seconds

Study on Estimation and Application of the Fwl-D-F curves for Urban Basins (도시유역의 Fwl-D-F 곡선 산정 및 활용에 관한 연구)

  • Choi, Hyun-Il;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2687-2692
    • /
    • 2010
  • There have been performed many researched for flood magnitude analysis, for example, the Flood-Duration-Frequency relations in the west. Because flood water stage data are more available rather than flood amount data at flood gauge stations of Korea, this study developed Flood water level-Duration-Frequency (Fwl-D-F) curves using rainfall Intensity-Duration-Frequency(I-D-F) curves for the quantitative flood risk assessment in urban watersheds. Fwl-D-F curve is made from water level data for 18 years at Joongrayng bridge station of Joongrayng River basin in Han River drainage area. Fwl-D-F curve can estimate the occurrence frequency for a certain flood elevation, which can be used for urban flood forecasting. It is expected that the flood elevation can be estimated from the forecasted rainfall data using both Fwl-D-F and I-D-F curves.

A study on the Flood Frequency Analyzed in Consideration of Low Outliers. (Low Outliers를 고려한 홍수빈도분석에 관한 연구)

  • 이순혁;홍성표;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.62-70
    • /
    • 1988
  • This study was conducted to solve the problems for the unsuitable parameters and the uncertainty of design flood can be appeared by low outliers were inclined to the lower part from the trend of the balance of the data. Derivation of reasonable design flood was attempted finally by modification of low outliers with analysis of flood frequency by means of Log Pearson Type Ill distribution. Three subwatersheds were selected as studying basins with the annual maximum series including low outliers along Geum River basin. The results through this study were analyzed and summarized as follows. 1. Log Pearson Type In distribution was confirmed as a reasonable one by X$^2$ goodness of fit test at Gong Ju, Gyu Am, og Cheon watershed along Geum River basin. 2. Probable flood flows for each watershed were derivated by flood frequency curve with outliers. 3. Weighted skew coefficient for each watershed was calculated for the evaluation of freq- uency factor which is needed for the modification of low outlier. 4. It was confirrned that adjusted frequency curve has a lower tendency than that of deletion of low outlier in common at all watersheds. 5. Final probable flood flows were derivated by modification with evaluation of modified basic statistics for three watersheds. 6. In comparison with a frequency curve with modification and one with outlier, The former has a higher probable flood flow within three years of return periods than that of the latter, and vice versa over three years of return periods.

  • PDF

Derivation of Flood Frequency Curve with Uncertainty of Rainfall and Rainfall-Runoff Model (강우 및 강우-유출 모형의 불확실성을 고려한 홍수빈도곡선 유도)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Park, Sae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.59-71
    • /
    • 2013
  • The lack of sufficient flood data being kept across Korea has made it difficult to assess reliable estimates of the design flood while relatively sufficient rainfall data are available. In this regard, a rainfall simulation based derivation technique of flood frequency curve has been proposed in some of studies. The main issues in deriving the flood frequency curve is to develop the rainfall simulation model that is able to effectively reproduce extreme rainfall. Also the rainfall-runoff modeling that can convey uncertainties associated with model parameters needs to be developed. This study proposes a systematic approach to fully consider rainfallrunoff related uncertainties by coupling a piecewise Kernel-Pareto based multisite daily rainfall generation model and Bayesian HEC-1 model. The proposed model was applied to generate runoff ensemble at Daechung Dam watershed, and the flood frequency curve was successfully derived. It was confirmed that the proposed model is very promising in estimating design floods given a rigorous comparison with existing approaches.

Conversion of Flood Level and Flood Frequency Analysis for Goan Station in Han River (한강 고안지점의 홍수위 환산과 홍수 빈도해석)

  • 이승재;서규우
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.191-203
    • /
    • 1995
  • In this study, the past flood levels of Goan station, which is one of major gaging stations and located at downstream of Paldang dam, were converted based on the 1994's cross section and the flood quantiles were estimated from flood frequency analysis. The recently established rating curve was used to convert flood levels. And the parameters of the several probability distributions commonly used in hydrologic analysis were estimated based on the method of probability weighted moments and the goodness of fit tests were applied to those distributions. As a result, the gamma-2 and gamma-3 distributions were selected as the appropriate models. The flood lovels and quantiles for selected return periods were calculated based on those distributions. Furthermore, frequency analysis using historical flood information was performed to overcome the misleading caused by missing data.

  • PDF

Affecting Water Supply Capacity Followed by Allocating Flood Control Volume in Heightening Reservoir (홍수조절용량 설정에 따른 증고저수지의 용수공급능력 변화)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.57-70
    • /
    • 2010
  • This study was performed to analyze the affect of water supply capacity followed by allocating flood control volume in heightening reservoir, of which Baekgog reservoir was selected as a case study in here. Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water level will be heightened from EL. 100. 1m to EL. 102.1m, and total storage from 21.75M $m^3$ to 26.67M $m^3$. Flood inflow with 200year frequency was estimated to 997 $m^3$/s in peak flow and 22.54M $m^3$ in total volume. Reservoir flood routing was conducted to determine flood limited water levels, which was determined to have scenarios such as EL 97-98-99m in periods of 6.21.-7.20., 7.21.-8.20., and 8.21.-9.20., respectively, EL 97-97-97m, EL 98-98-98m in present reservoir, and EL 99-100-101m, EL 99-99-99m, and EL 100-100-100m in heightened reservoir. Reservoir inflow was simulated by DAWAST model. Annual paddy irrigation requirement was estimated to 33.19M $m^3$ to 2,975ha. Instream flow was allocated to 0.14mm/d from October to April. Operation rule curve was drawn using inflow, irrigation and instream flow requirements data. In case of withdrawal limit reservoir operation using operation rule curve, reduction rates of annual irrigation supply before and after flood control by reservoir were 2.0~4.3% in present size and 1.5~3.6% in heightened size. Reliability on water supply was decreased from 77.3% to 63.6~68.2% in present size and from 81.6% to 72.7~79.5% in heightened size. And reduction rates of water storage at the end of year before and after flood control by reservoir were 7.3~16.5% in present size and 7.7~16.9% in heightened size. But water supplies were done without any water deficiency through withdrawal limit reservoir operation in spite of low flood regulating water level.

  • PDF

Quantification of Flood Reduction Effect of Small Stormwater Detention Facilities by NRCS Curve Number (유출곡선지수를 이용한 소규모 저류시설의 유출저감효과 정량화)

  • Yoo, Chul-Sang;Kim, Kyoung-Jun;Park, Min-Kyu;Yoon, Jeong-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.109-118
    • /
    • 2010
  • This study quantified the flood reduction effect of small stormwater detention facilities by the NRCS curve number. The modified rational equation was used to calculate the inflow volume into the detention facilities. The NRCS curve number in the cases w/ and w/o storage facility was calculated with respect to the rainfall characteristics(rainfall frequency, duration) and the size of storage facilities. Finally, diagrams showing the curve number reduction rate versus the size of storage facility were developed. The diagrams can be used to evaluate the flood reduction effect of storage facility reasonably and efficiently when estimating the optimal location and size of storage facility. The results based on the methodology propsed in this study were also compared with those of previous study for their validation.

Evaluation of flood frequency analysis technique using measured actual discharge data (실측유량 자료를 활용한 홍수량 빈도해석 기법 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Song, Jae-Hyun;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.333-343
    • /
    • 2022
  • For water resource management, the design flood is calculated using the flood frequency analysis technique and the rainfall runoff model. The method by design flood frequency analysis calculates the stochastic design flood by directly analyzing the actual discharge data and is theoretically evaluated as the most accurate method. Actual discharge data frequency analysis of the measured flow was limited due to data limitations in the existing flood flow analysis. In this study, design flood frequency analysis was performed using the measured flow data stably secured through the water level-discharge relationship curve formula. For the frequency analysis of design flood, the parameters were calculated by applying the bayesian inference, and the uncertainty of flood volume by frequency was quantified. It was confirmed that the result of calculating the design flood was close to that calculated by the rainfall-runoff model by applying long-term rainfall data. It is judged that hydrological analysis can be done from various perspectives by using long-term actual flow data through hydrological survey.

An Estimation of Flood Quantiles at Ungauged Locations by Index Flood Frequency Curves (지표홍수 빈도곡선의 개발에 의한 미 계측지점의 확률 홍수량 추정)

  • Yoon, Yong-Nam;Shin, Chang-Kun;Jang, Su-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The study shows the possible use of the index flood frequency curves for an estimation of flood quantiles at ungauged locations. Flood frequency analysis were made for the annual maximum flood data series at 9 available stations in the Han river basin. From the flood frquency curve at each station the mean annual flood of 2.33-year return period was determined and the ratios of the flood magnitude of various return period to the mean annual flood at each station were averaged throughout the Han river basin, resulting mean flood ratios of different return periods. A correlation analysis was made between the mean annual flood and physiographic parameters of the watersheds i.e, the watershed area and mean river channel slope, resulting an empirical multiple linear regression equation over the whole Han river basin. For unguaged watershed the flood of a specified return period could be estimated by multiplying the mead flood ratio corresponding the return period with the mean annual flood computed by the empirical formula developed in terms of the watershed area and river channel slope. To verify the applicability of the methodology developed in the present study the floods of various return periods determined for the watershed in the river channel improvement plan formulation by the Ministry of Construction and Transportation(MOCT) were compared with those estimated by the present method. The result proved a resonable agreement up to the watershed area of approximately 2,000k $m^2$. It is suggested that the practice of design flood estimation based on the rainfall-runoff analysis might have to be reevaluated because it involves too much uncertainties in the hydrologic data and rainfall-runoff model calibration.

Estimation of Inundation Area by Linking of Rainfall-Duration-Flooding Quantity Relationship Curve with Self-Organizing Map (강우량-지속시간-침수량 관계곡선과 자기조직화 지도의 연계를 통한 범람범위 추정)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.839-850
    • /
    • 2018
  • The flood damage in urban areas due to torrential rain is increasing with urbanization. For this reason, accurate and rapid flooding forecasting and expected inundation maps are needed. Predicting the extent of flooding for certain rainfalls is a very important issue in preparing flood in advance. Recently, government agencies are trying to provide expected inundation maps to the public. However, there is a lack of quantifying the extent of inundation caused by a particular rainfall scenario and the real-time prediction method for flood extent within a short time. Therefore the real-time prediction of flood extent is needed based on rainfall-runoff-inundation analysis. One/two dimensional model are continued to analyize drainage network, manhole overflow and inundation propagation by rainfall condition. By applying the various rainfall scenarios considering rainfall duration/distribution and return periods, the inundation volume and depth can be estimated and stored on a database. The Rainfall-Duration-Flooding Quantity (RDF) relationship curve based on the hydraulic analysis results and the Self-Organizing Map (SOM) that conducts unsupervised learning are applied to predict flooded area with particular rainfall condition. The validity of the proposed methodology was examined by comparing the results of the expected flood map with the 2-dimensional hydraulic model. Based on the result of the study, it is judged that this methodology will be useful to provide an unknown flood map according to medium-sized rainfall or frequency scenario. Furthermore, it will be used as a fundamental data for flood forecast by establishing the RDF curve which the relationship of rainfall-outflow-flood is considered and the database of expected inundation maps.

Assessment of Future Flood According to Climate Change, Rainfall Distribution and CN (기후변화와 강우분포 및 CN에 따른 미래 홍수량 평가)

  • Kwak, Jihye;Kim, Jihye;Jun, Sang Min;Hwang, Soonho;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.85-95
    • /
    • 2020
  • According to the standard guidelines of design flood (MLTM, 2012; MOE, 2019), the design flood is calculated based on past precipitation. However, due to climate change, the frequency of extreme rainfall events is increasing. Therefore, it is necessary to analyze future floods' volume by using climate change scenarios. Meanwhile, the standard guideline was revised by MOE (Ministry of Environment) recently. MOE proposed modified Huff distribution and new CN (Curve Number) value of forest and paddy. The objective of this study was to analyze the change of flood volume by applying the modified Huff and newly proposed CN to the probabilistic precipitation based on SSP and RCP scenarios. The probabilistic rainfall under climate change was calculated through RCP 4.5/8.5 scenarios and SSP 245/585 scenarios. HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) was simulated for evaluating the flood volume. When RCP 4.5/8.5 scenario was changed to SSP 245/585 scenario, the average flood volume increased by 627 ㎥/s (15%) and 523 ㎥/s (13%), respectively. By the modified Huff distribution, the flood volume increased by 139 ㎥/s (3.76%) on a 200-yr frequency and 171 ㎥/s (4.05%) on a 500-yr frequency. The newly proposed CN made the future flood value increase by 9.5 ㎥/s (0.30%) on a 200-yr frequency and 8.5 ㎥/s (0.25%) on a 500-yr frequency. The selection of climate change scenario was the biggest factor that made the flood volume to transform. Also, the impact of change in Huff was larger than that of CN about 13-16 times.