• Title/Summary/Keyword: Flood Frequency Analysis

Search Result 303, Processing Time 0.025 seconds

A Determination of Magnitude and Frequency of River Floods (하천 홍수량의 크기 및 빈도 결정)

  • Noh, Jae Sik;Lee, Kil Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.141-150
    • /
    • 1992
  • In this study, six gaging stations(T/M bureau) in the Han River basin were selected for flood frequency analysis and was carried out frequency analysis by POT(peaks Over a Threshold) model where existing flood data of short record length are available. Frequency and magnitudes of each station floods in the river basins were estimated by POT model based on statistical method, and also were compared with standard errors to verify applicability of the estimates by POT model. Furthermore, in order to evaluate for the adequate design flood which is needed for the design of the hydrologic structures in the ungaged watersheds, it is considered to be possible to develop the statistical regionalized model by regional frequency analysis.

  • PDF

A Study on The Bed Scour at Stream Bridge during Flood - In the case of Jeongjang Bridge in Gurye - (홍수시 소하천 교량에서의 하상세굴 연구 - 구례 정장교를 중심으로 -)

  • Jung, Jae-Sung;Chung, Mahn;Kim, Min-Hwan
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1075-1080
    • /
    • 2002
  • The hydrological frequency of the flood in July 2000 at Seosi stream basin in Gurye and the bed scour of the stream channel were estimated to investigate the bed scour related with Jeongjang bridge collapse. The storm over the basin in July 2000, 303mm/day was 103year frequency rainfall and the equivalent flood was 2580cms. As the results of 100year and 30year flood application, flood level 30.78~31.38m and mean velocity 3.79~4.03m/s were appeared. And the purification project of Seosi stream increased the velocity of the section near to Jeongjang bridge by the improvement of conveyance at the downstream. The local scour at pier was the major factor of bed scour at Jeongjang bridge site and the total scour at pier No.6 was increased from 2.32m to 2.45m by the purification project.

A Study on Rainfall-Runoff Frequency Analysis for Estimating Design Flood (설계홍수량 산정을 위한 강우-유출 빈도해석에 관한 연구)

  • Choi, Jongin;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.605-612
    • /
    • 2015
  • The purpose of this study is to compare and analyze design flood estimation methods which are the basis for determining the size of a flood control structure. The result from a flood frequency analysis which is considered as the best way for estimating design flood was assumed as a true value, and a method of simulating runoff and performing frequency analysis of the maximum discharge data were compared with a design storm method. For a comparative analysis of design flood estimation, seven basins (Namgang reservoir basin, Soyanggang reservoir basin, Andong reservoir basin, Seomjingang reservoir basin, Imha reservoir basin, Chungju reservoir basin, Hapcheon reservoir basin) were selected. For the Seomjingang, Hapcheon, and Imha reservoir basins, the method proposed in this study showed better results, whereas the conventional method showed better results for the Namgang, Soyanggang, and Chungju reservoir basins. The results show that the conventional method (the design storm method) is not the best way for estimating design flood and the proposed method can be used as an alternative for small basins.

Uncertainty Analysis for Parameter Estimation of Probability Distribution in Rainfall Frequency Analysis Using Bootstrap (강우빈도해석에서 Bootstrap을 이용한 확률분포의 매개변수 추정에 대한 불확실성 해석)

  • Seo, Young-Min;Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.321-327
    • /
    • 2011
  • Bootstrap methods is the computer-based resampling method that estimates the standard errors and confidence intervals of summary statistics using the plug-in principle for assessing the accuracy or uncertainty of statistical estimates, and the BCa method among the Bootstrap methods is known much superior to other Bootstrap methods in respect of the standards of statistical validation. Therefore this study suggests the method of the representation and treatment of uncertainty in flood risk assessment and water resources planning from the construction and application of rainfall frequency analysis model considersing the uncertainty based on the nonparametric BCa method among the Bootstrap methods for the assessement of the estimation of probability rainfall and the effect of uncertainty considering the uncertainty of the parameter estimation of probability in the rainfall frequency analysis that is the most fundamental in flood risk assessement and water resources planning.

Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District - (홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 -)

  • Kim, Sang-Ho;Kim, Han-Joong;Hong, Seong-Gu;Park, Chang-Eoun;Lee, Nam-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.

Flood Frequency Analysis with the consideration of the heterogeneous impacts from TC and non-TC rainfalls: application to daily flows in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.121-121
    • /
    • 2020
  • Varying dominant processes, including Tropical Cyclone (TC) and non-TC rainfall events, have been known to drive the occurrence of precipitation in South Korea. With the changes in the pattern of the Earth's climate due to anthropogenic activities, nonstationarity or changes in the magnitude and frequency of these dominant processes have been separately observed for the past decades and are expected to continue in the coming years. These changes often cause unprecedented hydrologic events such as extreme flooding which pose a greater risk to the society. This study aims to take into account a more reliable future climate condition with two dominant processes. Diverse statistical models including the hidden markov chain, K-nearest neighbor algorithm, and quantile mappings are utilized to mimic future rainfall events based on the recorded historical data with the consideration of the varying effects of TC and non-TC events. The data generated is then utilized to the hydrologic model to conduct a flood frequency analysis. Results in this study emphasize the need to consider the nonstationarity of design rainfalls to fully grasp the degree of future flooding events when designing urban water infrastructures.

  • PDF

Land-use Enhancement Benefit According to Flood Safety (치수안전도에 따른 토지이용의 편익 분석)

  • Lee, Jin Ouk;Kim, Hung Soo;Shim, Myung Pil;Choi, Seung An
    • Journal of Wetlands Research
    • /
    • v.6 no.4
    • /
    • pp.45-57
    • /
    • 2004
  • This study analyzed the effect of land-use enhancement benefits with the flood safety which it is not quantified in the flood damage analysis, Korea. The land-use enhancement benefits mean the enhancement of land-use value according to the rise of flood safety of the protected area by the flood control projects and we performed the analysis of land-use enhancement benefits with the publicly announced land price which can objectively represent the land-use value of a specific area. We verified the statistical significance of the floating rate of land price according to the effects of flood control projects and the characteristics of a river through the analysis of variance. As a result of the verification, the increase of land-use value was represented by the net annual average floating rate of land price. The flood safety was classified as flood damage potential and flood prevention capacity. The flood damage potential was classified according to the rate of urbanization and flood prevention capacity was represented by the conditional annual non-exceedance probability obtained from the frequency analysis with uncertainty for the flood discharge. The study areas were small urban cities and we calculated the conditional annual non-exceedance probabilities of 200-year flood event for the levees constructed with the conditions of 10- and 50-year design frequency. The result was shown that the net annual average floating rate of land price would be raised nearly 5 times for 10%-increase of the conditional annual non-exceedance probability in small city areas.

  • PDF

Flood Analysis by Unsteady Flow on Tidal River Estuary (부정류에 의한 감조하천의 홍수분석)

  • 김현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.81-88
    • /
    • 1990
  • The flow in a river reach where is influenced by tidal motion is characterized by unsteady flow. The flood analysis in the river reach needs depending upon the theory based on the complete unsteady flow equations. In this study the unsteady flow model which is called CRIUM (Channel Routing by Implicit Unsteady Flow Model) was developed and was applied to the Mankyong and Dongjin river in order to analyze the flood characteristics. The results, which were calibrated and verified by the flood records to be measured in the two rivers, show that unsteady flow mode] can be used for the derivation of the flood hydrograph. The peak flood discharges were estimated as 4,960 and $2,870m^3$/sec in 100 year frequency at the estuary of the Mankyong and Dongjin river, respectively. In addition, it was analyzed that the river reaches were not influenced by tidal motion when the discharge magnitude was larger than approximately $3,000m^3$/sec.

  • PDF

Analysis of the Applicability of Flood Risk Indices According to Flood Damage Types (홍수피해유형별 홍수 위험 지수 적용성 분석)

  • Kim, Myojeong;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • In this study, the applicabilities of flood risk indices using FVI from IPCC, PSR method from OECD, and DPSIR method from EEA, were analyzed. Normalized values of daily maximum rainfall, hourly maximum rainfall, ten minute maximum rainfall, annual precipitation, total days of heavy rainfall (more than 80mm/day), density of population, density of asset, DEM, road statistics, river maintenance ratio, reservoir capacity, supply ratio of water supply and sewerage, and pumping capacity were constructed from 2000 to 2015 for nationwide 113 watersheds, to estimate flood risk indices. The estimated indices were compared to 4 different types of flood damage such as the number of casualties, damage area, the amount of flood damage, and flood frequency. The relationships between flood indices and different flood damage types demonstrated that the flood index using the PSR method shows better results for the amount of flood damage, the number of casualties and damage area, and the flood index using the DPSIR method shows better results for flood frequency.

Comparison of Flood Inundation Models using Topographic Feature (지형요소를 이용한 홍수범람해석 모형의 비교)

  • Moon, Changgeon;Lee, Jungsik;Cho, Sunggeun;Shin, Shachul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • The objective of this study is to compare flood inundation models for small stream basin. HEC-RAS model was used for the analysis of one dimensional hydraulics and HEC-GeoRAS, Ras Mapper and RiverCAD models were applied for the flood inundation analysis in Gum Chung stream. Flood inundations are to simulate by flood inundation models using observed data and rainfall on each frequency and to compare with inundation area based on the flood plain maps. The results of this study are as follows; Area of flood inundations by HEC-GeoRAS model is similar to that of flood plain map and appears in order of RAS Mapper and RiverCAD model. Flood inundation area by RiverCAD model is to estimate lager than that of RAS Mapper and HEC-GeoRAS model in flood area on each frequency and the results show that they have a little difference in models of flood inundation analysis at small stream. Comparing the area of flood inundations by flood depth, the results of three models are relatively similar in flood depth as 2.0 m below, and RiverCAD model shows a significant difference in flood depth as 2.0 m or more.