• Title/Summary/Keyword: Flood Analysis

Search Result 1,818, Processing Time 0.203 seconds

Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring (초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토)

  • Kim, Jongmin;Kim, Gwang Soo;Kwon, Siyoon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.919-928
    • /
    • 2023
  • Rainfall characteristics in Korea are concentrated during the summer flood season. In particular, when a large amount of turbid water flows into the dam due to the increasing trend of concentrated rainfall due to abnormal rainfall and abnormal weather conditions, prolonged turbid water phenomenon occurs due to the overturning phenomenon. Much research is being conducted on turbid water prediction to solve these problems. To predict turbid water, turbid water data from the upstream inflow is required, but spatial and temporal data resolution is currently insufficient. To improve temporal resolution, the development of the Turbidity-SS conversion equation is necessary, and to improve spatial resolution, multi-item water quality measurement instrument (YSI), Laser In-Situ Scattering and Transmissometry (LISST), and hyperspectral sensors are needed. Sensor-based measurement can improve the spatial resolution of turbid water by measuring line and surface unit data. In addition, in the case of LISST-200X, it is possible to collect data on particle size, etc., so it can be used in the Turbidity-SS conversion equation for fraction (Clay: Silt: Sand). In addition, among recent remote sensing methods, the spatial distribution of turbid water can be presented when using UAVs with higher spatial and temporal resolutions than other payloads and hyperspectral sensors with high spectral and radiometric resolutions. Therefore, in this study, the Turbidity-SS conversion equation was calculated according to the fraction through laboratory analysis using LISST-200X and YSI-EXO, and sensor-based field measurements including UAV (Matrice 600) and hyperspectral sensor (microHSI 410 SHARK) were used. Through this, the spatial distribution of turbidity and suspended sediment concentration, and the turbidity calculated using the Turbidity-SS conversion equation based on the measured suspended sediment concentration, was presented. Through this, we attempted to review the applicability of the Turbidity-SS conversion equation and understand the current status of turbid water occurrence.

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

Analysis of Forestry Structure and Induced Output Based on Input - output Table - Influences of Forestry Production on Korean Economy - (산업관련표(産業關聯表)에 의(依)한 임업구조분석(林業構造分析)과 유발생산액(誘發生産額) -임업(林業)이 한국경제(韓國經濟)에 미치는 영향(影響)-)

  • Lee, Sung-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.4-14
    • /
    • 1974
  • The total forest land area in Korea accounts for some 67 percent of the nation's land total. Its productivity, however, is very low. Consequently, forest production accounts for only about 2 percent of the gross national product and a minor proportion of no more than about 5 percent versus primary industry. In this case, however, only the direct income from forestry is taken into account, making no reference to the forestry output induced by other industrial sectors. The value added Or the induced forestry output in manufacturing the primary wood products into higher quality products, makes a larger contribution to the economy than direct contribution. So, this author has tried to analyze the structure of forestry and compute the repercussion effect and the induced output of primary forest products when utilized by other industries for their raw materials, Hsing the input-output table and attached tables for 1963 and 1966 issued by the Bank of Korea. 1. Analysis of forestry structure A. Changes in total output Durng the nine-year period, 1961-1969, the real gross national product in Korea increased 2.1 times, while that of primary industries went up about 1. 4 times. Forestry which was valued at 9,380 million won in 1961, was picked up about 2. 1 times to 20, 120 million won in 1969. The rate of the forestry income in the GNP, accordingly, was no more than 1.5 percent both in 1961 and 1962, whereas its rate in primary industries increased 3.5 to 5.4 percent. Such increase in forestry income is attributable to increased forest production and rise in timber prices. The rate of forestry income, nonetheless, was on the decrease on a gradual basis. B. Changes in input coefficient The input coefficient which indicates the inputs of the forest products into other sectors were up in general in 1966 over 1963. It is noted that the input coefficient indicating the amount of forest products supplied to such industries closely related with forestry as lumber and plywood, and wood products and furniture, showed a downward trend for the period 1963-1966. On the other hand, the forest input into other sectors was generally on the increase. Meanwhile, the input coefficient representing the yolume of the forest products supplied to the forestry sector itself showed an upward tendency, which meant more and more decrease in input from other sectors. Generally speaking, in direct proportion to the higher input coefficient in any industrial sector, the reinput coefficient which denotes the use of its products by the same sector becomes higher and higher. C. Changes in ratio of intermediate input The intermediate input ratio showing the dependency on raw materials went up to 15.43 percent m 1966 from 11. 37 percent in 1963. The dependency of forestry on raw materials was no more than 15.43 percent, accounting for a high 83.57 percent of value added. If the intermediate input ratio increases in any given sector, the input coefficient which represents the fe-use of its products by the same sector becomes large. D. Changes in the ratio of intermediate demand The ratio of the intermediate demand represents the characteristics of the intermediary production in each industry, the intermediate demand ratio in forestry which accunted for 69.7 percent in 1963 went up to 75.2 percent in 1966. In other words, forestry is a remarkable industry in that there is characteristics of the intermediary production. E. Changes in import coefficient The import coefficient which denotes the relation between the production activities and imports, recorded at 4.4 percent in 1963, decreased to 2.4 percent in 1966. The ratio of import to total output is not so high. F. Changes in market composition of imported goods One of the major imported goods in the forestry sector is lumber. The import value increased by 60 percent to 667 million won in 1966 from 407 million won in 1963. The sales of imported forest products to two major outlets-lumber and plywood, and wood products and furniture-increased to 343 million won and 31 million won in 1966 from 240million won and 30 million won in 1963 respectively. On the other hand, imported goods valued at 66 million won were sold to the paper products sector in 1963; however, no supply to this sector was recorded in 1963. Besides these major markets, primary industries such as the fishery, coal and agriculture sectors purchase materials from forestry. 2. Analysis of repercussion effect on production The repercussion effect of final demand in any given sector upon the expansion of the production of other sectors was analyzed, using the inverse matrix coefficient tables attached to the the I.O. Table. A. Changes in intra-sector transaction value of inverse matrix coefficient. The intra-sector transaction value of an inverse matrix coefficient represents the extent of an induced increase in the production of self-support products of the same sector, when it is generated directly and indirectly by one unit of final demand in any given sector. The intra-sector transaction value of the forestry sector rose from 1.04 in 1963 to 1, 11 in 1966. It may well be said, therefore, that forestry induces much more self-supporting products in the production of one unit of final demand for forest products. B. Changes in column total of inverse matrix coefficient It should be noted that the column total indicates the degree of effect of the output of the corresponding and related sectors generated by one unit of final demand in each sector. No changes in the column total of the forestry sector were recorded between the 1963 and 1966 figures, both being the same 1. 19. C. Changes in difference between column total and intra-sector transaction amount. The difference between the column total and intra-sector transaction amount by sector reveals the extent of effect of output of related industrial sector induced indirectly by one unit of final demand in corresponding sector. This change in forestry dropped remarkable to 0.08 in 1966 from 0.15 in 1963. Accordingly, the effect of inducement of indirect output of other forestry-related sectors has decreased; this is a really natural phenomenon, as compared with an increasing input coefficient generated by the re-use of forest products by the forestry sector. 3. Induced output of forestry A. Forest products, wood in particular, are supplied to other industries as their raw materials, increasng their value added. In this connection the primary dependency rate on forestry for 1963 and 1966 was compared, i. e., an increase or decrease in each sector, from 7.71 percent in 1963 to 11.91 percent in 1966 in agriculture, 10.32 to 6.11 in fishery, 16.24 to 19.90 in mining, 0.76 to 0.70 in the manufacturing sector and 2.79 to 4.77 percent in the construction sector. Generally speaking, on the average the dependency on forestry during the period 1963-1966 increased from 5.92 percent to 8.03 percent. Accordingly, it may easily be known that the primary forestry output induced by primary and secondary industries increased from 16, 109 million won in 1963 to 48, 842 million won in 1966. B. The forest products are supplied to other industries as their raw materials. The products are processed further into higher quality products. thus indirectly increasing the value of the forest products. The ratio of the increased value added or the secondary dependency on forestry for 1963 and 1966 showed an increase or decrease, from 5.98 percent to 7.87 percent in agriculture, 9.06 to 5.74 in fishery, 13.56 to 15.81 in mining, 0.68 to 0.61 in the manufacturing sector and 2.71 to 4.54 in the construction sector. The average ratio in this connection increased from 4.69 percent to 5.60 percent. In the meantime, the secondary forestry output induced by primary and secondary industries rose from 12,779 million Wall in 1963 to 34,084 million won in 1966. C. The dependency of tertiary industries on forestry showed very minor ratios of 0.46 percent and 0.04 percent in 1963 and 1966 respectively. The forestry output induced by tertiary industry also decreased from 685 million won to 123 million won during the same period. D. Generally speaking, the ratio of dependency on forestry increased from 17.68 percent in 1963 to 24.28 percent in 1966 in primary industries, from 4.69 percent to 5.70 percent in secondary industries, while, as mentioned above, the ratio in the case of tertiary industry decreased from 0.46 to 0.04 percent during the period 1963-66. The mining industry reveals the heaviest rate of dependency on forestry with 29.80 percent in 1963 and 35.71 percent in 1966. As it result, the direct forestry income, valued at 8,172 million won in 1963, shot up to 22,724 million won in 1966. Its composition ratio lo the national income rose from 1.9 percent in 1963 to 2.3 per cent in 1966. If the induced outcome is taken into account, the total forestry production which was estimated at 37,744 million won in 1963 picked up to 105,773 million won in 1966, about 4.5 times its direct income. It is further noted that the ratio of the gross forestry product to the gross national product. rose significantly from 8.8 percent in 1963 to 10.7 percent in 1966. E. In computing the above mentioned ratio not taken into consideration were such intangible, indirect effects as the drought and flood prevention, check of soil run-off, watershed and land conservation, improvement of the people's recreational and emotional living, and maintenance and increase in the national health and sanitation. F. In conclusion, I would like to emphasize that the forestry sector exercices an important effect upon the national economy and that the effect of induced forestry output is greater than its direct income.

  • PDF

Wind and Flooding Damages of Rice Plants in Korea (한국의 도작과 풍수해)

  • 강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.45-65
    • /
    • 1989
  • The Korean peninsular having the complexity of the photography and variability of climate is located within passing area of a lots of typhoon occurring from the southern islands of Philippines. So, there are various patterns of wind and flooding damages in paddy field occuring by the strong wind and the heavy rain concentrated during the summer season of rice growing period in Korea. The wind damages to rice plants in Korea were mainly caused by saline wind, dry wind and strong wind when typhoon occurred. The saline wind damage having symptom of white head or dried leaves occurred by 1.1 to 17.2 mg of salt per dry weight stuck on the plant which was located at 2. 5km away from seashore of southern coastal area during the period(from 27th to 29th, August, 1986) of typhoon &Vera& accompanying 62-96% of relative humidity, more than 6 m per second of wind velocity and 22.5 to 26.4$^{\circ}C$ of air temperature without rain. Most of the typhoons accompanying 4.0 to 8. 5m per second of wind and low humidity (lesp an 60%) with high temperature in the east coastal area and southen area of Korea. were changed to dry and hot wind by the foehn phenomenon. The dry wind damages with the symptom of the white head or the discolored brownish grain occurred at the rice heading stage. The strong wind caused the severe damages such as the broken leaves, cut-leaves and dried leaves before heading stage, lodging and shattering of grain at ripening stage mechanically during typhoon. To reduce the wind damages to rice plant, cultivation of resistant varieties to wind damages such as Sangpoongbyeo and Cheongcheongbyeo and the escape of heading stage during period of typhoon by accelerating of heading within 15th, August are effective. Though the flood disasters to rice plant such as earring away of field, burying of field, submerging and lodging damage are getting low by the construction of dam for multiple purpose and river bank, they are occasionally occurred by the regional heavy rain and water filled out in bank around the river. Paddy field were submerged for 2 to 4 days when typhoon and heavy rain occurred about the end of August. At this time, the rice plants that was in younger growing stage in the late transplanting field of southern area of Korea had the severe damages. Although panicles of rice plant which was in the meiotic growing stage and heading stage were died when flooded, they had 66% of yield compensating ability by the upper tilling panicle produced from tiller with dead panicle in ordinary transplanting paddy field. It is effective for reduction of flooding damages to cultivate the resistant variety to flooding having the resistance to bacterial leaf blight, lodging and small brown planthopper simultaneously. Especially, Tongil type rice varieties are relatively resistant to flooding, compared to Japonica rice varieties. Tongil type rice varieties had high survivals, low elongation ability of leaf sheath and blade, high recovering ability by the high root activity and photosynthesis and high yield compensating ability by the upper tillering panicle when flooded. To minimize the flooding and wind damage to rice plants in future, following research have to be carried out; 1. Data analysis by telemetering and computerization of climate, actual conditions and growing diagnosis of crops damaged by disasters. 2. Development of tolerant varieties to poor natural conditions related to flooding and wind damages. 3. Improvement of the reasonable cropping system by introduction of other crops compensating the loss of the damaged rice. 4. Increament of utilization of rice plant which was damaged.

  • PDF

The Analysis of the Current Status of Medical Accidents and Disputes Researched in the Korean Web Sites (인터넷 사이트를 통해 살펴본 의료사고 및 의료분쟁의 현황에 관한 분석)

  • Cha, Yu-Rim;Kwon, Jeong-Seung;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.4
    • /
    • pp.297-316
    • /
    • 2006
  • The increasing tendency of medical disputes is one of the remarkable social phenomena. Especially we must not overlook the phenomenon that production and circulation of information related to medical accidents is increasing rapidly through the internet. In this research, we evaluated the web sites which provide the information related to medical accidents using the keyword "medical accidents" in March 2006, and classified the 28 web sites according to the kinds of establishers. We also analyzed the contents of the sites, and checked and compared the current status of the web sites and problems that have to be improved. Finally, we suggested the possible solutions to prevent medical accidents. The detailed results were listed below. 1. Medical practitioners, general public, and lawyers were all familiar with and prefer the term "medical accidents" mainly. 2. In the number of sites searched by the keyword "medical accidents", lawyer had the most sites and medical practitioners had the least ones. 3. Many sites by general public and lawyers had their own medical record analysts but there was little professional analysts for dentistry. 4. General public were more interested in the prevention of medical accidents but the lawyers were more interested in the process after medical accidents. The sites by medical practitioners dealt with the least remedies of medical accidents, compared with other sites. 5. General public wanted the third party such as government intervention into the disputes including the medical dispute arbitration law or/and the establishment of independent medical dispute judgment institution. 6. In the comparison among the establishers of web sites, medical practitioners dealt with the least examples of medical accidents. 7. The suggestion of cases in counseling articles related to dental accidents were considered less importantly than the reality. 8. Whereas there were many articles about domestic cases related to the bloody dental treatment, in the open counseling articles the number of dental treatment regarding to non insurance treatment was large. 9. In comparing offered information of medical accidents based on the establishers, general public offered vocabularies, lawyers offered related laws and medical practitioners offered medical knowledge relatively. 10. They all cited the news pressed by the media to offer the current status of domestic medical accidents. Especially among the web sites by general public, NGOs provided the plentiful statistical data related to medical accidents. 11. The web sites that collect the medical accidents were only two. As a result of our research, we found out that, in the flood of information, medical disputes can be occurred by the wrong information from third party, and the medical practitioners have the most passive attitudes on the medical accidents. Thus, it is crucial to have the mutual interchange and exchange of information between lawyer, patients and medical practitioners, so that based on clear mutual comprehension we can solve the accidents and disputes more positively and actively.

한강하류지형면의 분류와 지형발달에 대한 연구 (양수리에서 능곡까지)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.23-73
    • /
    • 2005
  • Purpose of study; The purpose of this study is specifically classified as two parts. The one is to attempt the chronological annals of Quaternary topographic surface through the study over the formation process of alluvial surfaces in our country, setting forth the alluvial surfaces lower-parts of Han River area, as the basic deposit, and comparing it to the marginal landform surfaces. The other is to attempt the classification of micro morphology based on the and condition premising the land use as a link for the regional development in the lower-parts of Han river area. Reasons why selected the Lower-parts of Han river area as study objects: 1. The change of river course in this area is very serve both in vertical and horizontal sides. With a situation it is very easy to know about the old geography related to the formation process of topography. 2. The component materials of gravel, sand, silt and clay are deposited in this area. Making it the available data, it is possible to consider about not oかy the formation process of topography but alsoon the development history to some extent. 3. The earthen vessel, a fossil shell fish, bone, cnarcoal and sea-weed are included in the alluvial deposition in this area. These can be also valuable data related to the chronological annals. 4. The bottom set conglometate beds is also included in the alluvial deposits. This can be also valuable data related to the research of geomorphological development. 5. Around of this area the medium landform surface, lower landform surface, pediment and basin, are existed, and these enable the comparison between the erosion surfaces and the alluvial surfaces. Approach : 1. Referring to the change of river beds, I have calculated the vertical and horizontal differences comparing the topographic map published in 1916 with that published in 1966 and through the field work 2. In classifying the landform, I have applied the method of micro morphological classification in accordance with the synthetic index based upon the land conditions, and furthermore used the classification method comparing the topographic map published in 1916 and in that of 1966. 3. I have accorded this classification with the classification by mapping through appliying the method of classification in the development history for the field work making the component materials as the available data. 4. I have used the component materials, which were picked up form the outcrop of 10 places and bored at 5 places, as the available data. 5. I have referred to Hydrological survey data of the ministry of Construction (since 1916) on the overflow of Han-river, and used geologic map of Seoul metropolitan area. Survey Data, and general map published in 1916 by the Japanese Army Survbey Dept., and map published in 1966 by the Construction Research Laboratory and ROK Army Survey Dept., respectively. Conclusion: 1. Classification of Morphology: I have added the historical consideration for development, making the component materials and fossil as the data, to the typical consideration in accordance with the map of summit level, reliefe and slope distribution. In connection with the erosion surface, I have divided into three classification such as high, medium and low-,level landform surfaces which were classified as high and low level landform surfaces in past. furthermore I have divided the low level landform surface two parts, namely upper-parts(200-300m) and bellow-parts(${\pm}100m$). Accordingly, we can recognize the three-parts of erosion surface including the medium level landform surface (500-600m) in this area. (see table 22). In condition with the alluvial surfaces I have classified as two landform surfaces (old and new) which was regarded as one face in past. Meamwhile, under the premise of land use, the synthetic, micro morphological classification based upon the land condition is as per the draw No. 19-1. This is the quite new method of classification which was at first attempted in this country. 2. I have learned that the change of river was most severe at seeing the river meandering rate from Dangjung-ni to Nanjido. As you seee the table and the vertical and horizontal change of river beds is justly proportionable to the river meandering rate. 3. It can be learned at seeing the analysis of component materials of alluvial deposits that the component from each other by areas, however, in the deposits relationship upper stream, and between upper parts and below parts I couldn't always find out the regular ones. 4. Having earthern vessel, shell bone, fossil charcoal and and seaweeds includen in the component materials such as gravel, clay, sand and silt in Dukso and Songpa deposits area. I have become to attempt the compilation of chronicle as yon see in the table 22. 5. In according to hearing of basemen excavation, the bottom set conglomerate beds of Dukso beds of Dukso-beds is 7m and Songpa-beds is 10m. In according to information of dredger it is approx. 20m in the down stream. 6. Making these two beds as the standard beds, I have compared it to other beds. 7 The coarse sand beds which is covering the clay-beds of Dukso-beds and Nanjidobeds is shown the existence of so-called erosion period which formed the gap among the alluvial deposits of stratum. The former has been proved by the sorting, bedding and roundness which was supplied by the main stream and later by the branch stream, respectively. 8. If the clay-beds of Dukeo-bed and Songpa-bed is called as being transgressive overlap, by the Eustatic movement after glacial age, the bottom set conglomerate beds shall be called as being regressive overlap at the holocene. This has the closest relationship with the basin formation movement of Seoul besides the Eustatic movement. 9. The silt-beds which is the main component of deposits of flood plain, is regarded as being deposited at the Holocene in the comb ceramic and plain pottery ages. This has the closest relationship with the change of river course and river beds.