• Title/Summary/Keyword: Floating zone melt growth process

Search Result 5, Processing Time 0.023 seconds

Spinel$(MgAl_2O_4)$ single crystal growth by floating zone method (Floating zone 법에 의한 Spinel$(MgAl_2O_4)$단결정 성장)

  • Seung Min Kang;Byong Sik Jeon;Keun Ho Orr
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.325-335
    • /
    • 1994
  • The spinel $MgO.Al_20_3$ single crystals were grown by FZ (floating zone) method. Its melting point is about, $2135^{\circ}C$ and is important to the process of the growth from the melt. There have been some reports of the growth by Czochralski and Verneuil method. However, this study is the first trial to the spinel crystal with the application of FZ method. In this study, $MgAl_2O_4$ spinel crystals were grown by using FZ method which uses the ellipsoidal mirror furnace having infrared halogen lamps as a heat source. With dopants of transition metal ions, it was possible to melt the feed rod which does not absorb the infrared rays due to the transparent properties to infrared ray of spinel itself and the red, green and blue colored spinel single crystals could be grown more easily. As a conclusion, the purpose of this study is to find the spinel single crystal growth mechanism with respect to th growth interfaces and molten zone stability and to characterize the state of growth resulting from the concavity to the melt of interfaces.

  • PDF

Effects of the crystal rotation on heat transfer and fluid flow in the modified floating-zone crystal growth (수정된 부유띠결정성장법에서 결정봉의 회전이 유동 및 열전달에 미치는 효과)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3322-3333
    • /
    • 1996
  • A numerical analysis has been conducted to investigate a modified floating-zone crystal growth process in which most of the melt surface is covered with a heated ring. The crystal rod is not only pulled downward but rotated around its axisymmetric line during crystal growth process in order to produce the flat interface of crystal growth and the single crystal growth of NaNO3 is considered in 6mm diameter. The present study is made from a full-equation-based analysis considering a pulling velocity in all of solid and liquid domains and both of solid-liquid interfaces are tracked simultaneously with a governing equation in each domain. Numerical results are mainly presented for the comparison of the surface shape of rotational crystal rod with that of no-rotational crystal rod and the effects of revolution speeds of the crystal rod. Results show that the rotation of crystal rod produces more its flat surface. In addition, the shape of crystal growth near the centerline is more concaved with the increase in the revolution speed of crystal rod. The flow pattern and temperature distribution is analyzed and presented in each case. As the pulling velocity of crystal rod is increasing, the free surface of the melt below the heated ring is enlarged due to the crystal interface migrating downward.

Microstructure of the (Nd/Y)-Ba-Cu-O superconductors by floating zone melt growth process (부유대역용융성장법을 이용한 (Nd/Y)-Ba-Cu-O계 초전도체의 미세구조)

  • 김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.83-87
    • /
    • 2003
  • $(Nd/Y)_{1.8}Ba_{}2.4Cu_{3.4}O_{7-x}$high $T_c$ superconductor was directionally grown by floating Bone melt growth process with a large temperature gradient in air. Cylindrical green rods of (Nd/Y)1.8 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mold. Microstructures were observed by SEM and TEM and superconducting properties were measured by a SQUID magnetometer. Nonsuperconducting $(Nd/Y)_2BaCuO_5$ inclusions were uniformly distributed within the superconducting $(Nd/Y)Ba_2Cu_3O_x$ matrix. The directionally melt-textured (Nd/Y) 1.8 superconductor showed an onset Tc $\geq$ 90 K and a sharp superconducting transition.

YIG(Yttrium Iron Garnet) SingLe Crystal Growth by Floating Zone Method (Floating Zone법에 의한 YIG단결정 성장)

  • 신재혁;김범석;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.1-1
    • /
    • 1992
  • YIG(Yttrium Iron Garnet) single crystals were grown by FZ(Floating Zone) method. Since YIG melts incongruently, TSFZ(Traveling Solvent Floating Zone) method which was modified FZ was applied to grow YIG single crystals. The optimum growth condition were growth rate Imm/hr, counter-rotation 30rpm and oxidized atmosphere was necessary to sintering and growth process. The quality of grown crystals depended on the degree of sintering. The voids were generated by the reaction of Fe ions with oxygen and the density of voids was increased with the growth rate increased. When the growth rate was more than 1.5mm/hr, the cellular growth occured and the density of dislocation was increased at the periphery of crystals. Also, secondary phases of orthoferrite(YFe$O_3$)compost ion were observed in the grown crystal.

  • PDF

Manganese Zinc Ferrite Singel Crystal Growth by Continuous Crystal Growing Method (연속성장법에 의한 Mn-Zn Ferrite 단결정 성장)

  • 정재우;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.539-543
    • /
    • 1992
  • The continuous growth method was developed for Mn-Zn Ferrite single crystals. It is a new process that the polycrystalline MnχZn1-χFe2O4 raw materials are supplied continuously from the powder feeding system to the crucible heated by R.F. induction and melted in the crucible, and after the single crystals seed is attached to crucible's hole, the crystals are pulled downward with rotation. Growing the crystals by using the growth method different from the conventional Bridgman or Floating Zone method, we defined the factors having effect on the crystal growing through the pre-experiments. They are temperature distribution in the crucible, melt velocity according to its height, wettability between the crucible's bottom and melt. Therefore, Mn-Zn Ferrite single crystals were to be grown by attaining the appropriate melt height in the crucible, powder feeding rate, temperature gradient between the crucible and interface, crystal growing speed, and this method was confirmed to have possibility for single crystal growing.

  • PDF