• 제목/요약/키워드: Floating ring

검색결과 83건 처리시간 0.019초

Numerical Modeling of Floating Electrodes in a Plasma Processing System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • 제24권4호
    • /
    • pp.102-110
    • /
    • 2015
  • Fluid model based numerical analysis is done to simulate a plasma processing system with electrodes at floating potential. $V_f$ is a function of electron temperature, electron mass and ion mass. Commercial plasma fluid simulation softwares do not provide options for floating electrode boundary value condition. We developed a user subroutine in CFD-ACE+ and compared four different cases: grounded, dielectric, zero normal electric field and floating electric potential for a 2D-CCP (capacitively coupled plasma) with a ring electrode.

내부쉴드 구조에 따른 컴팩트한 폴리머 부싱 설계에 관한 연구 (A Study on the Design of Compact Polymer Bushing with Inner Control Shield)

  • 조한구;유대훈;강형경
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.436-442
    • /
    • 2009
  • This paper describes a study on the design of compact polymer bushing with inner control shield. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. In accordance, the field control can be achieved by means of the designs of such inner control shields. The floating and ring shield designs was decreased electric field concentration at critical parts of the bushing. The shield gaps is formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. As a result, the resulting electrical stress are thus reduced in the range $17{\sim}23%$ in the bushing with floating and ring shield designs. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

과급기 축계의 진동 해석 (Vibration Analysis of Turbocharger Rotor-Bearing System)

  • Suk, Ho-Il;Yang, Bo-Suk;Song, Jin-Dea
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.400.2-400
    • /
    • 2002
  • Recently rotating machines have became high speed and high Power and light weight. Bearings are one of the main components which influence power loss and stability of rotating machines. Appropriate bearing should be selected with considering characteristics of rotating machine. Floating ring journal bearing(FIB) consists of an inner film and outer film, and possess high damping and stability. FJB has been for adopted into turbocharger for the high stability at high operating speed. (omitted)

  • PDF

세미 플로팅 링 베어링으로 지지된 터보차저의 Subsynchronous 진동 특성 (Subsynchronous Vibration Behavior of Turbocharger Supported by Semi Floating Ring Bearing)

  • 이동현;김영철;김병옥;안국영;이영덕
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.15-20
    • /
    • 2017
  • The small turbocharger for the automotive application is designed to operate up to 200,000 rpm to increase system efficiency. Because of high rotation speed of turbocharger, floating ring bearing are widely adopted due to its low friction loss and high rotordynamic stability. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a semi-floating ring bearing. The rotordynamic model for the turbocharger rotor was constructed based on the finite element method and fluid film forces were calculated based on the infinitely short bearing assumption. In linear analysis, we considered fluid film force as stiffness and damping element and in nonlinear analysis, the fluid film force was calculated by solving the time dependent Reynolds equation. We verified the developed theoretical model by comparing to modal test results of test rotors. The analysis results show that there are two unstable modes, which are conical and cylindrical modes. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis, frequency jump phenomenon demonstrated when vibration mode is changed from conical mode to cylindrical one. This jump phenomenon was also demonstrated in the test. However, the natural frequency measured in the test differs from those obtained using nonlinear analysis.

임펠러 및 플로팅 링 실이 원심 펌프의 성능에 미치는 영향 (Effects of Impellers and Floating Ring Seals on Performance of Centrifugal Pumps)

  • 김대진;최창호;홍순삼;김진한
    • 대한기계학회논문집B
    • /
    • 제35권10호
    • /
    • pp.1083-1088
    • /
    • 2011
  • 임펠러 및 플로팅 링 실의 형상이 원심 펌프의 성능에 미치는 영향을 수류 시험 결과를 토대로 연구하였다. 연구 대상이 된 펌프는 30 톤급 및 75 톤급 액체로켓엔진용으로 개발된 단단 원심형 펌프로 연소실에 추진제(액체산소, 케로신)를 공급하는 터보펌프의 일부이다. 펌프의 양정은 임펠러 출구 폭 및 날개 개수, 날개의 출구 각도의 영향을 받는 것으로 나타났다. 또한 개발된 펌프는 플로팅 링 실의 간극에 따라 그 효율에 차이가 있었으며, 크기 증가에 따른 효율 증가 효과는 크게 나타나지 않았다.

유성 기어 유동 중개륜의 컴플라이언스 해석 (Analysis of Compliance of Planetary Gears based on Floating Intermediate Rings)

  • 조인성
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.378-385
    • /
    • 2013
  • An epicyclic gearing system is compact and lightweight. However, it is difficult to share the driving force equally because the system has closed gear trains with multiple driving points, and it always has geometrical errors in the elements. Thus, in the case of planetary gears, the first problem is how to distribute the load evenly to the numerous planets. The method widely used abroad for this purpose is to utilize the elastic deformation of the components of the structure. However, the deflection is very complicated, and it is very easy for vibration problems to occur because of the decrease in the natural frequencies. Therefore, to equalize the load on the planets, this paper discusses the principle and theory behind the functioning of a floating intermediate ring. This magnifies the displacement of a planet's center arising from the equilibrium of the load and the lubricating film pressure, which improves the compliance of the planets. The results show that load equalization of the planets is possible through this improvement in their compliance.

Rotordynamic Performance Measurements of An Oil-Free Turbocharger Supported on Gas Foil Bearings and Their Comparisons to Floating Ring Bearings

  • Lee, Yong-Bok;Park, Dong-Jin;Sim, Kyuho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.23-35
    • /
    • 2015
  • This paper presents the rotordynamic performance measurement of oil-free turbocharger (TC) supported on gas foil bearings (GFBs) for 2 liter class diesel vehicles and comparison to floating ring bearings (FRBs). Oil-free TC was designed and developed via the rotordynamic analyses using dynamic force coefficients from GFB analyses. The rotordynamics and performance of the oil-free TC was measured up to 85 krpm while being driven by a diesel vehicle engine, and compared to a commercial oil-lubricated TC supported on FRBs. The test results showed that the GFBs increased the rotor speed by ~ 20% at engine speeds of 1,500 rpm and 1,750 rpm, yielding the reduction of turbine input energy by more than 400 W. Incidentally, an external shock test on the oil-free TC casing was conducted at the rotor speed of 60 krpm, and showed a good capability of vibration damping due to the well-known dry friction mechanism of the GFBs.

원주방향 급유홈 프로팅링 저어널베어링의 해석 (An Analysis of the Circumferentially Grooved Floating Ring Journal Bearing)

  • 정연민;김경웅
    • Tribology and Lubricants
    • /
    • 제7권2호
    • /
    • pp.75-84
    • /
    • 1991
  • The static and dynamic performances of a floating ring journal bearing with central circumferential grooves at the inner and outer films are obtained numerically with isothermal lubrication theory. Elrod algorithm implementing Jakobsson-Floberg-Olsson cavitation boundary condition is adopted to predict cavitation regions in the inner and outer films more accurately than conventional analyses using half Sommerfeld or Reynolds conditions. The pressure drop in the circumferential groove of the inner film due to the rotation of the journal and ring is taken into account. It is shown that the lubricant supply pressure has significant influence on the load capacity and dynamic coefficients of the bearing. When the supply pressure is low and the journal speed is high, the pressure drop results in severe starvation of lubricant in the inner film and varies the overall performance of the bearing remarkably.

9.5톤급 액체추진엔진용 터보펌프 시스템의 로터다이나믹 해석 (The Rotordynamic Analysis of TurboPump System for 9.5ton thrust Liquid Rocket Engine)

  • 양홍준;김경호;김영수;우유철
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2001년도 제17회 학술발표회 논문초록집
    • /
    • pp.15-18
    • /
    • 2001
  • In this paper, we investigate the rotordynamic characteristics of turbopump system for 9.5ton thrust liquid rocket engine. A finite element method is used to analyze the vibratior characteristics of a rotor-bearing system. The turbopump rotating system is modeled by shaft with sixty elements, nine rigid disks, four ball bearings and four floating ring seals. The calculation results show that the margin of 1st critical speed is increased from 12% to 68% by use of elastic damping ring. In addition, the margin of the 2nd critical speed near the operating speed is increased from 30% to 63% by the stiffness and damping of floating ring seals.

  • PDF

터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향 (Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor)

  • 이인범;홍성기
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.