• Title/Summary/Keyword: Floating offshore wind

Search Result 173, Processing Time 0.026 seconds

Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines

  • Choi, E.H.;Cho, J.R.;Lim, O.K.
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.751-761
    • /
    • 2015
  • A multi-platform offshore wind farm is receiving the worldwide attention for the sake of maximizing the wind power capacity and the dynamic stability at sea. But, its wind power efficiency is inherently affected by the interference of wake disturbed by the rotating blades, so its layout should be appropriately designed to minimize such wake interference. In this context, the purpose of this paper is to introduce a layout optimization for multi-platform offshore wind farm consisted of 2.5MW spar-type floating wind turbines. The layout is characterized by the arrangement type of wind turbines, the spacing between wind turbines and the orientation of wind farm to the wind direction, but the current study is concerned with the spacing for a square-type wind farm oriented with the specific angle. The design variable and the objective function are defined by the platform length and the total material volume of the wind farm. The maximum torque loss and overlapping section area are taken as the constraints, and their meta-models expressed in terms of the design variable are approximated using the existing experimental data and the geometry interpretation of wake flow.

A Study on the Simplified Model for the Weight Estimation of Floating Offshore Plant using the Statistical Method (통계적 방법을 이용한 부유식 해양 플랜트의 중량 추정용 간이 모델 연구)

  • Seo, Seong-Ho;Roh, Myung-Il;Ku, Nam-Kug;Shin, Hyun-Kyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.373-382
    • /
    • 2013
  • The weight of floating offshore plant, such as an FPSO(Floating, Production, Storage, and Off-loading unit) and an offshore wind turbine, is important for estimating the amount of production material and for determining the production method. Furthermore, the weight is a factor which affects in the building cost and production time of the floating offshore plant. Although the importance of the weight has long been recognized, the weight has been roughly estimated by using the existing design and production data, and designer's experience. To solve this problem, a simplified model for the weight estimation of the floating offshore plant using the statistical method was proposed in this study. To do this, various data for estimating the weight of the floating offshore plant were collected through the literature survey, and then the correlation analysis and the multiple regression analysis were performed to generate the simplified model for the weight estimation. Finally, to examine the applicability of the developed model, it was applied to examples of the weight estimation of an FPSO topsides and an offshore wind turbine. As a result, it was shown that the developed model can be applied the weight estimation process of the floating offshore plant at the early design stage.

Installation Analysis of Multibody Systems Dynamics of an Offshore Wind Turbine Using an Offshore Floating Crane (해상 크레인을 이용한 해상 풍력 발전기의 다물체계 동역학 설치 해석)

  • Ku, Nam-Kug;Ha, Sol;Kim, Ki-Su;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • Recently, a number of wind turbines are being installed due to the increase of interest in renewable, environment-friendly energy. Especially, an offshore wind turbine is being watched with keen interest in that it has no difficulty in securing a site and can get high quality of wind, as compared with a wind turbine on land. The offshore wind turbine is transferred to and installed on the site by an offshore floating crane after it was made in a factory on land such as shipyard. At this time, it is important to secure the safety of the turbine because of its huge size and expensive cost. Thus, a dynamic analysis of the offshore wind turbine which is connedted with the offshore floating crane was performed based on the multibody systems dynamics in this study. As a result. it is shown that the analysis can be applied to verify the safety of a method for the transportation and installation of the offshore wind turbine suspended by the crane.

Simulation and Experimental Study of A TLP Type Floating Wind Turbine with Spoke Platform

  • Kim, Hyuncheol;Kim, Imgyu;Kim, Yong Yook;Youn, DongHyup;Han, Soonhung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.179-191
    • /
    • 2016
  • As the demand for renewable energy has increased following the worldwide agreement to act against global climate change and disaster, large-scale floating offshore wind systems have become a more viable solution. However, the cost of the whole system is still too high for practical realization. To make the cost of a floating wind system be more economical, a new concept of tension leg platform (TLP) type ocean floating wind system has been developed. To verify the performance of a 5-MW TLP type ocean floating wind power system designed by the Korea Advanced Institute of Science and Technology, the FAST simulation developed by the National Renewable Energy Laboratory is used. Further, 1/50 scale model tests have been carried out in the ocean engineering tank of the Research Institute of Medium and Small Shipbuilding, Korea. This paper compares the simulation and ocean engineering tank test results on motion prediction and tension assessment of the TLP anchor.

The effects of blade-pitch control on the performance of semi-submersible-type floating offshore wind turbines

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.79-99
    • /
    • 2018
  • The effects of BPC (blade pitch control) on FOWT (floating offshore wind turbine) motions and generated power are investigated by using a fully-coupled turbine-floater-mooring simulation program. In this regard, two example FOWTs, OC4-5MW semi-submersible FOWT and KRISO four-3MW-units FOWT, are selected since the numerical simulations of those two FOWTs have been verified against experiments in authors' previous studies. Various simulations are performed changing BPC natural frequency (BPCNF), BPC damping ratio (BPCDR), and wind speeds. Through the numerical simulations, it was demonstrated that negative damping can happen for platform pitch motions and its influences are affected by BPCNF, BPCDR, and wind speeds. If BPCNF is significantly larger than platform-pitch natural frequency, the pitch resonance can be very serious due to the BPC-induced negative-damping effects, which should be avoided in the FOWT design. If wind speed is significantly higher than the rated wind velocity, the negative damping effects start to become reduced. Other important findings are also given through systematic sensitivity investigations.

Conceptual Design of Self-Weighing Support Structure for Offshore Wind Turbines and Self-Floating Field Test (자중조절형 해상풍력 지지구조 개념설계 및 부유이송 현장시험)

  • Kim, Seoktae;Kim, Donghyun;Kang, Keumseok;Jung, Minuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.631-638
    • /
    • 2016
  • Offshore wind power can be an alternative for onshore wind power which suffers from not only civil complaints regarding to landscape damage and noise but also wind power siting due to lack of onshore site candidates. Compared to onshore wind power, offshore wind power is free from these problems considering that generally the sites are far enough from the coast. And more electricity is generated in offshore wind turbines due to abundant offshore wind resources. However high installation costs of offshore turbines could deteriorate the economical efficiency. The main cause of the high installation costs comes from a long-term lease of the heavy marine equipment and the consequential high rental cost. In this paper, the conceptual design of the support structure for offshore wind turbines will be suggested for the installation of them with less heavy marine equipment.

Numerical modeling and global performance analysis of a 15-MW Semisubmersible Floating Offshore Wind Turbine (FOWT)

  • Da Li;Ikjae Lee;Cong Yi;Wei Gao;Chunhui Song;Shenglei Fu;Moohyun Kim;Alex Ran;Tuanjie Liu
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.287-312
    • /
    • 2023
  • The global performance of a 15 MW floating offshore wind turbine, a newly designed semisubmersible floating foundation with multiple heave plates by CNOOC, is investigated with two independent turbine-floater-mooring coupled dynamic analysis programs CHARM3D-FAST and OrcaFlex. The semisubmersible platform hosts IEA 15 MW reference wind turbine modulated for VolturnUS-S and hybrid type (chain-wire-chain with clumps) 3×2 mooring lines targeting the water depth of 100 m. The numerical free-decay simulation results are compared with physical experiments with 1:64 scaled model in 3D wave basin, from which appropriate drag coefficients for heave plates were estimated. The tuned numerical simulation tools were then used for the feasibility and global performance analysis of the FOWT considering the 50-yr-storm condition and maximum operational condition. The effect of tower flexibility was investigated by comparing tower-base fore-aft bending moment and nacelle translational accelerations. It is found that the tower-base bending moment and nacelle accelerations can be appreciably increased due to the tower flexibility.

Analysis of Earthquake Responses of a Floating Offshore Structure Subjected to a Vertical Ground Motion (해저지진의 수직지반운동에 의한 부유식 해양구조물의 지진응답 해석기법 개발)

  • Lee, Jin Ho;Kim, Jae Kwan;Jin, Byeong Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.279-289
    • /
    • 2014
  • Considering a rigorously fluid-structure interaction, a method for an earthquake response analysis of a floating offshore structure subjected to vertical ground motion from a seaquake is developed. Mass, damping, stiffness, and hydrostatic stiffness matrices of the floating offshore structure are obtained from a finite-element model. The sea water is assumed to be a compressible, nonviscous, ideal fluid. Hydrodynamic pressure, which is applied to the structure, from the sea water is assessed using its finite elements and transmitting boundary. Considering the fluid-structure interaction, added mass and force from the hydrodynamic pressure is obtained, which will be combined with the numerical model for the structure. Hydrodynamic pressure in a free field subjected to vertical ground motion and due to harmonic vibration of a floating massless rigid circular plate are calculated and compared with analytical solutions for verification. Using the developed method, the earthquake responses of a floating offshore structure subjected to a vertical ground motion from the seaquake is obtained. It is concluded that the earthquake responses of a floating offshore structure to vertical ground motion is severely influenced by the compressibility of sea water.

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

CFD Analysis for Determining Surge-direction Drag Coefficient of FOWT based on Simulation Time Step (시뮬레이션 시간 단계에 따른 FOWT 서지방향 항력계수 결정에 관한 CFD해석 연구)

  • Ho-Seong Yang;Young-Ho Lee
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.17-25
    • /
    • 2024
  • In this study, the effect of the time step specified in a computational fluid dynamics (CFD) simulation on load response is analyzed and the drag coefficients of the floating body of floating offshore wind turbines (FOWTs) are estimated. By evaluating the error in the FOWT load response and the change in the drag-coefficient values based on the density of the time intervals, this study aims to establish a time-interval setting that minimizes the time and cost of CFD simulations for selecting drag-coefficient values. Practical CFD utilization strategies necessary for the calibration of medium-to high-fidelity analysis tools are presented. Based on a comparative analysis of CFD simulations conducted at various time intervals, the results confirmed that under a certain time interval that sufficiently considers various factors, the accuracy of the FOWT response with respect to density shows minimal differences, thereby providing an efficient utilization method for CFD simulations in FOWT design and analysis.