• 제목/요약/키워드: Floating LiDAR

검색결과 6건 처리시간 0.024초

서해 해상 환경에서 선박형 부유식 라이다의 Carbon Trust OWA Stage 2 국내 인증 사례에 대한 고찰 (A study on a Carbon Trust OWA Stage 2 Domestic Verification Case in the Yellow Sea)

  • 강용수;장동찬;양수인;이백범
    • 풍력에너지저널
    • /
    • 제15권1호
    • /
    • pp.50-59
    • /
    • 2024
  • Floating LiDAR systems provide significant savings in cost and time compared to the fixed meteorological mast measurement type, and have the advantage of being able to be deployed in various locations due to less restriction on the depth of the installation site. However, to use the wind data collected by a floating LiDAR system commercially, verification procedure is required to ensure that the collected data have sufficient availability. The Carbon Trust OWA roadmap presents guidelines in three stages for the reliability of the wind data collected using a floating LiDAR system. Companies developing wind farms are requesting at least Stage 2 (pre-commercial stage) presented by OWA, and many overseas companies are leading the domestic and overseas markets. In this paper, we introduce the case of OWA Stage 2 certification for the commercial operation of floating LiDAR systems.

부유식 라이다 시스템 모션 보정 알고리즘의 구현 및 검증 (Implementation and validation of a motion compensation algorithm for Floating LiDAR System)

  • 박미호;김현규;문경록;허치훈
    • 풍력에너지저널
    • /
    • 제14권4호
    • /
    • pp.87-97
    • /
    • 2023
  • Due to the limitations of onshore wind power, the wind power industry is currently transitioning to offshore wind power. There has been active research on the development of a floating LiDAR system (FLS) that is easy to install at a low cost. The Carbon Trust published a commercialization roadmap for FLS in 2013, and an updated version was released in 2018, taking into account industry experience. The roadmap divides the development maturity of FLS into three stages: Stage 1 (prototype), Stage 2 (pre-commercialization), and Stage 3 (commercialization), each of which requires availability and accuracy assessment. The results must meet the requirements of the Key Performance Index (KPI) for each stage. Therefore, when developing FLS, the motion compensation algorithm of the FLS is essential because the LiDAR can produce incorrect measurements of wind speed and direction due to the six degrees of freedom in motion. In this study, we implemented the FLS motion compensation algorithm developed by Nassif, F.B. et al. and validated it using data provided by Fraunhofer. In conclusion, the results showed that the determination coefficients of wind speed and wind direction were improved compared to those obtained from the met mast.

해상풍력단지 개발을 위한 부유식 라이다 검증 (Validation of Floating LiDAR System for Development of Offshore Wind Farms)

  • 이진재;강승진;이광세;김홍우;김성완;안유옥;경남호
    • 신재생에너지
    • /
    • 제16권3호
    • /
    • pp.35-41
    • /
    • 2020
  • In this study, a floating LiDAR system (FLS) is investigated through a field test involving two steps. First, correlations among wind speeds, measured using the met mast and two LiDARs, are computed to analyze the acceptance criteria of LiDAR for measuring wind speed. The results of the analysis show that the slopes of single variant regression between mean wind speeds are below 1.03 and the coefficient of determination is above 0.97. Next, correlations among wind speeds measured using the FLS and a fixed LiDAR are determined through a field test carried out in Doomi-doo, Tong-young, Gyeongsangnam-do. The FLS is installed 300 m away from the fixed LiDAR on the ground. The results show that the slope of single variant regression is approximately 1.0275 and the coefficient of determination is above 0.971. According to the IEA/wind 18 recommendation, it is found that the developed FLS measures valid wind speeds to assess wind resources for the development of offshore wind farms.

LiDAR가 탑재된 계류된 부유식 기상 부이의 개념 설계 (Conceptual Design of Moored Floating Meterological Buoy with LiDAR)

  • 김정록;이혜빈;조일형;경남호;부성윤
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.325-334
    • /
    • 2017
  • This paper reports the conceptual design process for a floating metocean data measurement system (FMDMS) for measuring wind information at sea. The FMDMS consists of three circular pontoons, columns, and a deck, which the LiDAR (lighting detection and ranging) is installed on. The dynamics of the mooring lines and motion responses of the FMDMS were analyzed using commercial codes such as WAMIT and OrcaFlex. One design criterion of the developed FMDMS was to maintain the motion responses as small as possible to enhance the LiDAR's accuracy. Starting with the preliminary design parameters such as the FMDMS's principal dimensions, weight, and important parameters of mooring system, we checked whether the FMDMS met the design requirements at each design stage, and then made modifications as necessary. The developed FMDMS showed a large pitch behavior for a small heave motion.

군산·영광 해상 6개 지점 동시 관측을 통한 풍력자원 평가 및 바람지도 검증 (Wind resource evaluation and verification of wind map with simultaneous observation at six offshore locations in Gunsan and Yeonggwang)

  • 정문선;전인성;김지영
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.5-13
    • /
    • 2023
  • Floating LiDAR systems (FLSs) are used in many countries because they are easier to install than stationary weather towers, have low maintenance costs, and can be installed in deep sea areas. However, FLSs are rarely used in Korea due to a lack of clear evaluation criteria to verify the reliability and uncertainty of their measurements. This study is the first to verify the reliability of FLSs in Korea with one-year simultaneous observation of six lidar systems - two fixed and four floating systems - in sea areas of Gunsan and Yeonggwang. The reliability of FLSs measurement data was verified by comparison between fixed and floating systems. Moreover, differences between existing wind resource maps and the data observed from the six points were analyzed and wind resource maps were calibrated. The results show a return rate of more than 95 % of the observed data and strong correlations between fixed and floating systems (average R2 of 0.977). Additionally, errors in wind speed predictions to produce a wind resource map could be significantly reduced from 5.7 % to 0.6 % after calibrations with the observation data.

서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 설계 및 계류 시스템의 수치 해석적 안정성 평가 (Design of Ship-type Floating LiDAR Buoy System for Wind Resource Measurement inthe Korean West Sea and Numerical Analysis of Stability Assessment of Mooring System)

  • 강용수;김종규;이백범;양수인;김종욱
    • 한국항해항만학회지
    • /
    • 제46권6호
    • /
    • pp.483-490
    • /
    • 2022
  • 부유식 라이다는 해상풍력단지 조성 시 필수적인 풍황관측의 새로운 패러다임을 제공하는 시스템이다. 시간과 비용을 절약하고 환경에 미치는 영향을 최소화하며 지역사회의 반발까지 줄일 수 있어 업계의 표준으로 떠오르고 있다. 하지만 부표의 동요에 의한 교란요인이 관측자료의 신뢰도에 영향을 미치므로 안정적인 플랫폼의 설계 및 검증이 매우 중요하다. 국내에서는 이 분야의 기술 진출이 늦어짐에 따라 다수의 외국계 장비업체들이 국내시장을 장악하고 있다. 우리나라 서해안은 조수간만의 차가 매우 큰 천해성 환경이기 때문에 강한 해류가 반복적으로 나타나고, 계절별로 다른 강한 에너지의 파도가 형성된다. 본 논문은 이와 같이 복합적인 환경 특성을 지닌 우리나라 해역에서 라이다 운영에 적합한 부표식에 대한 연구를 수행하였다. 본 논문에서는 가장 먼저 적용된 선박형 부표식의 최적화 설계 및 검증 사례를 소개하고, 향후 다양한 플랫폼 개발의 기반이 될 중요한 개념을 도출하고자 한다.