• Title/Summary/Keyword: Floater

Search Result 105, Processing Time 0.019 seconds

A study on the flow measurement method of river using High-performance GPS floater (고성능 GPS 전자부자를 활용한 하천 수리량 측정법 연구)

  • Lee, Jeong Min;Lee, Chang Hyun;Kim, Young Do;Kim, Dongsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.53-53
    • /
    • 2021
  • 본 연구에서는 수심센서가 장착된 고성능 GPS 전자부자를 활용하여 하천 수리량 측정에 대한 방법과, 개발 된 고성능 GPS 전자부자의 성능 검증을 위해서 수리량 측정장비인 Flowtracker 측정데이터와 비교분석을 하고자 하였다. 국내 하천환경에서의 수리량 조사는 필수적인 요소이다. 최근 국내 첨단기술을 활용한 수리량 계측 기술들은 ADCP, ADV, UVM, SIV와 같은 많은 계측 기술들이 있다. 이러한 기술들은 장비가 매우고가이며, 많은 시간과 인력이 필요하고 상황에 따른 한계점들이 존재한다. 이러한 수리량 계측 기술들은 오일러리안 타입 계측 방식의 측정으로 계측 구간이 한정되어 있어 수질 오염사고와 같은 장구간의 지속적인 정보가 필요한 하천상황에 따라 라그랑지안 방식의 계측도 필요하다. 본 연구에서 개발 된 고성능 GPS 전자부자는 IoT 기술이 접목되어 실시간 데이터 활용이 가능하며 실시간 데이터 분석을 통해 라그랑지안 타입의 장구간 계측이 가능하다. 고성능 GPS 전자부자는 외경 197mm 지름 88mm, 무게 700g 이내로 간편하게 소지 및 사용 시 투척이 간단하여 인력 및 현장 접근성에 대한 장점을 가지고 있다. 또한 기존 선행 연구들의 GPS 전자부자들의 경우 홍수 발생 시에 유량 측정에서 어려움이 있었기 때문에 본 연구에서 개발된 고서은 GPS 전자부자의 경우 수심센서의 장착으로 유량까지 산정할 수 있기 때문에 홍수 발생이나, 오염물질 발생으로 인한 접근성이 어려운 하천상황에서 유용하게 사용될 수 있다. 고성능 GPS 전자부자를 활용하여 중·소하천인 경북 김천 및 구미시에 위치한 감천에서 성능 평가를 진행하였으며 Flowtracker 수리량 측정 데이터 대비 오차율이 10% 이내로 들어오는 것을 확인하였다. 이러한 성능 검증을 바탕으로 고성능 GPS 전자부자를 활용한 측정법을 제시하였다.

  • PDF

Energy cost of loads carried on the hands, head, or feet (짐나르기의 에너지 소요량)

  • Hwang, Dai-Yun;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.5 no.2
    • /
    • pp.29-40
    • /
    • 1971
  • Oxygen consumption, pulmonary ventilation, heart rate, and breathing frequency were measured on 8 men walking on a treadmill carrying load of 9 kg on hand, back, or head. Besides measurements were made on subjects carrying loads of 2.6 kg each on both feet. The speed of level walking was 4, 5, and 5.5km/hr and a fixed speed off km/hr with grades of 0, 3, 6, and 9%. Comparisons were made between free walking without load and walking with various types of loads. The following results were obtained. 1. In level or uphill walking the changes in oxygen consumption, pulmonary ventilation, breathing frequency and heart rate were smallest in back load walking, and largest in hand load walking. The method of back load was most efficient and hand load was the least efficient. The energy cost in head load walking was smaller than that of in hand load walking. It was assumed that foot load costed more energy than hand load. 2. In level walking the measured parameters increased abruptly at the speed of 5.5 km/hr. Oxygen consumption in a free walking at 4 km/hr was 11.4ml/kg b.wt., and 13.1 ml/kg b.wt. 5.5 km/hr, and in a hand load walking at 4 km/hr was 13.9, and 18.8 ml/kg b. wt. at 5.5 km/hr. 3. In uphill walking oxygen consumption and other parameters increased abruptly at the grade of 6%. Oxygen consumption at 4 km/hr and 0% grade was 11.4 ml/kg b. wt., 13.6 at 6% grade, and 16.21/kg b. wt. at 9% grade in a free walking. In back load walking oxygen consumption at 4km/hr and 0% grade was 12.3 ml/kg b.wt.,14.9 at 6% grade, and 18.7 ml/kg b.wt. In hand load walking the oxygen consumption was the greatest, namely, 13.9 at 0% grade, 17.9 at 6%, and 20.0 ml/kg b. wt. at 9% grade. 4. Both in level and uphill walking the changes in pulmonary ventilation and heart rate paralleled with oxygen consumption. 5. The changes in heart rate and breathing frequency in hand load were characteristic. Both in level and uphill walk breathing frequency increased to 30 per minute when a load was held on hand and showed a small increase as the exercise became severe. In the other method of load carrying the Peak value of breathing frequency was less than 30 Per minute. Heart rate showed 106 beats/minute even at a speed of 4 km/hr when a load was held on hand, whereas, heart rate was between, 53 and 100 beats/minute in the other types of load carriage. 6. Number of strides per minute in level walking increased as the speed increased. At the speed floater than 5 km/hr number of strides per minute of load carrying walk was greater than that of free walking. In uphill walk number of strides per minute decreased as the grade increased. Number of strides in hand load walk was greatest and back load walk showed the same number of strides as the free walk.

  • PDF

A Semilongitudinal Study on Cranial Base, Maxillary and Mandibular Growth of Korean Children Aging 7 to 17 Years Old (한국인 7-17세 아동의 두개저, 상악, 하악의 성장에 관한 준종단적 연구)

  • Sohn, Byung-Wha;Kim, Hyung-Soon
    • The korean journal of orthodontics
    • /
    • v.29 no.1 s.72
    • /
    • pp.23-35
    • /
    • 1999
  • Lateral cephalograms or 251 males md 286 females were taken and pubertal growth pattern or cranial base, maxillary and mandible of 7 to 17 years old Korean children was evaluated. 10 landmarks and 16 analytical measurements were evaluated. Analytical measurement and annual difference for each age group was calculated and tested for statistical significance. Analytical measurements were classified into three groups which were cranial base, maxillary and mandibular measurements and also classified into make and female measurements. Following results were achieved. 1. The circumpuberal growth spurt was earlier in Korean females than in males. 2. Cranial base, maxilla and mandible showed circumpuberal growth. The cranial base showed a relatively smaller amount of growth than the facial complex. 3. Middle and posterior cranial base length showed a floater increase than anterior cranial base length and circumpuberal growth spurt was also more definite. 4. the forward and downward growth or maxilla results from maxillary growht itself and transposition or the maxilla due to circumsutural growth aroud the maxilla. Ar-ANS and Ar-Pr which represent maxillary position relative to the cranial base showed more growth than ANS-PNS which represents maxillary bone growth. 5. mandible showed more vertical growth than horizontal growth but without significance. 6. Alveolar gwoth of maxilla and mandible show maximum growth rate of the time of permanent teeth eruption following loss of deciduous teeth . After this period alveolar growth shows a decreasing tendency.

  • PDF

Treatability Study on the Remediation Groundwater Contaminated by TPH Cr6+ : Lab-Scale Experiment (TPH와 6가 크롬으로 오염된 지하수 처리를 위한 실내 실험)

  • Lee, Gyu-Beom;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.332-345
    • /
    • 2019
  • The purpose of the study is to evaluate the treatability of contaminated groundwater with TPH and (or) $Cr^{6+}$. Laboratory scale tests were performed for oil/water separation, dissolved air flotation (DAF), coagulation and precipitation, and filtration with sand and activated carbon respectively. Two times of oil/water separation tests for total 40 minutes of separation or separating time shows 90.2 % of TPH removal rate. In case of DAF test for high TPH sample, the TPH removal rates were not varied significantly by the variation of microbubble size. However, tests for low TPH samples show that TPH removal rate increases as microbubbles are smaller. When coagulant was added to sample for DAF test, TPH removal rate was increased 12.3 %. SS removal rate by DAF was 97.9 % at $16-40{\mu}m$ and it was increased as the size of microbubble is reduced. Tests for coagulation and precipitation were performed to evaluate the removal of $Cr^{6+}$ in groundwater. The increase of $FeSO_4$ dosage increased $Cr^{6+}$ removal rate in the coagulation and precipitation process. As the amount of activated carbon in the filter media increased TPH removal rate in the filtration process. SS removal rate by the filtration was 96.7 % similar to the results of DAF process tests. The filtration process treats TPH and SS. Best design parameters are determined as the size of sand is $425-850{\mu}m$ and the ratio of activated carbon and sand is 50:50.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.