• Title/Summary/Keyword: Flight-simulation Loading

Search Result 19, Processing Time 0.023 seconds

Prediction of Crack Growth in 2124-7851 Al-Alloy Under Flight-Simulation Loading (비행하중하에서 2124-T851 알루미늄합금의 피로균열진전 예측)

  • Sim, Dong-Seok;Hwang, Don-Yeong;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1487-1494
    • /
    • 2002
  • In this study, to propose the prediction method of the crack growth under flight-simulation loading, crack growth tests are conducted on 2124-7851 aluminum alloy specimens. The prediction of crack growth under flight-simulation loading is performed by the stochastic crack growth model which was developed in previous study. First of all, to reduce the complex load history into a number of constant amplitude events, rainflow counting is applied to the flight-simulation loading wave. The crack growth, then, is predicted by the stochastic crack growth model that can describe the load interaction effect as well as the variability in crack growth process. The material constants required in this model are obtained from crack growth tests under constant amplitude loading and single tensile overload. The curves predicted by the proposed model well describe the crack growth behavior under flight-simulation loading and agree with experimental data. In addition, this model well predicts the variability of fatigue lives.

The Effect on Fatigue Crack Growth due to Omitting Low-amplitude Loads from Variable Amplitude Loading (변동하중에서 미소하중의 제거가 균열진전에 미치는 영향)

  • Shim, D.S.;Lee, S.H.;Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests were conducted on 2124-T851 aluminum alloy specimens. Three test spectra were generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results were compared with the data obtained from the flight-simulation loading. The experimental results show that the ranges equal to or smaller than 5% of the maximum load do not contribute to crack growth behavior because these are below the initial stress intensity factor range. Omitting these from the flight-simulation loading, test time can be reduced by 54%. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decreased, and crack growth curve deviated from the crack growth data under the flight-simulation loading because loading cycles above fatigue fracture toughness were omitted.

  • PDF

The Effect of Low-amplitude Cycles in Flight-simulation Loading (비행하중에서 피로균열진전에 미치는 미소하중의 영향)

  • Shim, Dong-Suk;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1045-1050
    • /
    • 2003
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests are conducted on 2124-T851 aluminum alloy specimens. Three test spectra are generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results are compared with the data obtained from the flight-simulation loading. The experimental results show that omission of the load ranges below 5% of the maximum load does not significantly affect crack growth behavior, because these are below the initial stress intensity factor range. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decrease, and therefore crack growth curve deviates from the crack growth data under the flight-simulation loading. To optimize the load range that can be omitted, crack growth curves are simulated by the stochastic crack growth model. The prediction shows that the omission level can be extended to 8% of the maximum load and test time can be reduced by 59%.

  • PDF

Auto Qualification Test Guide of Control Loading System for Flight Simulation Training Device (모의비행훈련장치용 조종반력시스템의 자동-QTG 구현)

  • Chun-Han Hong;Won-Seok Shin;Sang-Jin Jung;Byeong Soo Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • Flight simulators are crucial devices for aircraft piloting training and simulation, requiring regular inspections to maintain performance and operational quality. This study explores the development of an automated inspection system for flight simulators to automate quality inspections of control loading systems (CLS). While quality inspection of the control loading system (CLS) is essential for flight simulators, manual inspections are common practice. To address this, we developed an Auto Qualification Test Guide (Auto QTG) using artificial control logic and sensor data and applied it to the militarily simulator. Experimental results demonstrate that Auto QTG successfully automates quality inspections of CLS, enhancing accuracy and efficiency. This automated inspection system is expected to contribute to improving the operation and maintenance of flight simulators.

Robust $\mu$-Controller design for Control Loading System of Flight Simulator (항공기 시뮬레이터 조종력 제어시스템의 견실 $\mu$-제어기 설계)

  • 방경호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.405-408
    • /
    • 1998
  • Generally, the principle function of simulator control loading system is to provide the pilot or student with the "feel" of the actual aircraft flight control systems during flight, taxing, and in malfunction. Flight control "feel" is the resistance felt by the pilot when moving a control stick or pedal, coupled with the amount of control surface deflection, and hence aircraft response, resulting from the input. Therefore, the control loading servo must be capable of performing to some general list of requirements derived from real aircraft control forces. In this paper, we deal with a $\mu-controller$ design for a control loading system of the flight simulator. For this, we derive a frequency response of the hydraulic system from the identification data and then design a controller using a $\mu-synthesis$ method. Under the same condition of simulation, $\mu-controller$ provides the superior performance than PID controller.than PID controller.

  • PDF

Estimation of Discretionary Fuel for Airline Operations

  • Chang, Hyoseok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.1-13
    • /
    • 2021
  • Fuel costs represent one of the most substantial expenses for airlines, accounting for 20% - 36% of the airline's total operating cost. The present study discusses the so-called discretionary fuel that is additionally loaded at the discretion of airlines to cover unforeseen variations from the planned flight operations. The proper range of the discretionary fuel to be loaded for economic flight operations was estimated by applying Monte Carlo simulation technique. With this simulation model for loading discretionary fuel, airlines cannot only reduce the total amount of fuel to be consumed but also minimize the risk of unplanned flight disruptions caused by insufficient fuel on board. Airlines should be able to guarantee proper risk management processes for fuel boarding by carrying enough fuel to high-risk airports. This study would provide a practical guideline for loading proper amounts of discretionary fuel. Future researchers should be encouraged to improve this study by elaborating the weather variable.

A Study on QTG(Qualification Test Guide) Generation for a Flight Training Device to be Qualifiable at FAA Level 5 (X-Plane 기반 비행훈련장치의 FAA Level 5 FTD(Flight Training Device) 인증을 위한 QTG(Qualification Test Guide) 생성방법 연구)

  • Kim, Il-Woo;Park, TaeJun;Yoon, SukJun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1035-1042
    • /
    • 2016
  • By using commercial flight simulation game engine, X-Plane, we have studied QTG(Qualification Test Guide) generation that can satisfy FTD level 5. Flight model is SR-20 of Cirrus. In list of QTG, There are some items to measure control forces. therefore, we have installed CLS(Control Loading System) to flight control devices in order to make it possible to measure control forces. We made Autopilot function externally to make flight model in trim conditions because X-Plane don't provide internal trim routine function. In addition to develop an algorithm, it can automatically perform the test. To avoid the inconvenience to control as it was to be carried out in same conditions. In case of FTD level 5, it is possible to use alternative data sources not only real flight data. By using these alternative data sources, all test results satisfy a scope given by CFR Part 60.

Simulation of the control force of the light aircraft using flight test data (비행시험 자료를 이용한 경항공기의 조종력 시뮬레이션)

  • 김정환;황명신;이정훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.203-206
    • /
    • 1996
  • The purpose of this paper is to find how to determine the parameters of the basic control system design such as hinge moment coefficients and to display the controllability of the ChangCong-91. Since the estimation from the flight test of real aircraft is the most reliable, we performed the flight test of ChangGong-91 to get the various parameters such as velocity, height, control force, control surface deflection, 3 axis acceleration, 3 axis angular rate, pitch angle, angle of attack temperature and so on. We recorded the flight test data in VHS tapes and stored them to personal computer using A/D(analog to digital) converter. Flight test was done in various conditions, and the acquired data was processed with parameter identification method such as least square method. These data will be utilized for the development of Autopilot System design and Control Loading System design.

  • PDF

A Study on the Design of Hardware Switching Mechanism using TCP/IP Communication (TCP/IP를 이용한 하드웨어 전환장치 설계에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Lim, Sang-Soo;Ahn, Jong-Min;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.694-702
    • /
    • 2007
  • The SSWM(Software Switching Mechanism) of I-processor concept using non-real time in-house software simulation program is an effective method in order to develop the flight control law in desktop or HQS environment. And, this system has some advantages compare to HSWM(Hardware Switching Mechanism) such as remove the time delay effectiveness and reduce the costs of development. But, if this system loading to the OFP(Operational Flight Program), the OFP guarantee the enough throughput in order to calculate the two control law at once. Therefore, the HSWM(Hardware Switching Mechanism) of 2-processor concept is necessary. This paper addresses the concept of HSWM of the HQS-PC interface using TCP/IP(Transmission Control Protocol/Internet Protocol) communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed in order to reduce the abrupt transient response and minimize the integrator effect in pitch axis. The result of the analysis based on HQS pilot simulation using HSWM reveals that the flight control systems are switching between two computers without any problem.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration from Flight Test (비행시험을 통한 비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kim Seung-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.713-718
    • /
    • 2006
  • Supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. Especially, asymmetric loading configurations could result in decreased handling qualities for the pilot maneuvering of the aircraft. The design of the T-50 lateral-directional roll axis control laws change from beta-betadot feedback structure to simple roll rate feedback structure and gains such as F-16 in order to improve roll-off phenomena during pitch maneuver in asymmetric loading configuration. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver, but initial roll response is very fast and wing pitching moment is increased. In this paper, we propose the lateral control law blending between beta-betadot and simple roll rate feedback system in order to decreases the roll-off phenomenon in lateral axes during pitch maneuver without degrading of roll performance.