• Title/Summary/Keyword: Flight vehicles

Search Result 305, Processing Time 0.028 seconds

Analysis on Thermal Structural Characteristics of Thermal Protection System Panel for a High-speed Vehicle (초고속 비행체 열방어 시스템 패널의 열구조 특성 분석)

  • Lee, Heesoo;Kim, Yongha;Park, Jungsun;Goo, Namseo;Kim, Jaeyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.942-944
    • /
    • 2017
  • High-speed vehicles are subjected to complex loads, such as acoustic pressure from the engine at launch and aerodynamic heating and aerodynamic pressure during flight. A thermal protection system panel is required to protect internal systems such as the fuel tank of the vehicle from the external environment. This study defines analytical models for heat transfer and thermal structure characteristics of the thermal protection system panel. Furthermore, the study performed parameters analysis to achieve the thermal structural integrity and to make it lighter.

  • PDF

An Experimental Study on Effect of Angle of Attack on Elevator Control Force for Underwater Vehicle with Separate Fixed Fins (별도의 고정타를 갖는 수중운동체 승강타의 제어력에 미치는 받음각의 영향에 대한 실험적 연구)

  • Park, CJeong-Hoon;Shin, Myung-Sub;Choi, Jae-Yeop;Hwang, Jong-Hyun;Shin, Young-Hun;Kim, Yeon-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.243-252
    • /
    • 2016
  • Conventionally, the static angle of attack and static elevator tests are carried out separately to estimate hydrodynamic stability derivatives of underwater vehicles. However, it is difficult to verify the interaction between the angle of attack and elevator angle in such cases. In this study, we perform a static elevator with angle of attack test where both the angle of attack and elevator angle are varied simultaneously. The experimental results show that the angle of attack has an influence on the elevator control force and that this tendency is dependent on the sense in which the angle of attack and elevator angle are varied. We predict level flight performance using hydrodynamic derivatives estimated through this experiment. The predictions considering the effect of angle of attack show good agreement with trials conducted in the open sea.

High Speed Propulsion System Test Research Using a Shock Tunnel (충격파 터널을 이용한 고속추진기관 시험 연구)

  • Park, Gisu;Byun, Jongryul;Choi, Hojin;Jin, Yuin;Park, Chul;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.43-53
    • /
    • 2014
  • Shock tunnels are known to be capable of simulating flow-field environments of supersonic and hypersonic flights. They have been operated successfully world-wide for almost half a century. As a consequence of the strong interest in hypersonic vehicles in Korea, attention has been given on this type of facility and so an intermediate-sized shock tunnel has lately been built at KAIST. In the light of this, this paper presents our tunnel performance and some of the model scramjet test data. The freestream flow used in this work replicates a supersonic combustor environment for a Mach 5.7 flight speed.

Structural Analysis of Fasteners in the Aircraft Structure of the High-Altitude Long-Endurance UAV (고고도 장기체공 무인기용 기체구조 체결부 구조 해석)

  • Kim, Hyun-gi;Kim, Sung Joon;Kim, Sung Chan;Kim, Tae-Uk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2018
  • Unmanned Aerial Vehicles (UAV) have been used for various purposes in multiple fields, such as observation, communication relaying, and information acquisition. Nowadays, UAVs must have high performance in order to acquire more precise information in larger amounts than is now possible while performing for long periods. At present, domestically, a high-altitude long-endurance UAV (HALE UAV) for long-term flight in the stratosphere has been developed in order to replace some functions of the satellite. In this study, as a part of structural soundness evaluation of the aircraft structure developed for the HALE UAV, the structural soundness of the fasteners of the fuselage and tail is evaluated by calculating the margin of safety(M.S). The result confirms the validity of the design of the fasteners in the aircraft structure of the UAV.

Thermal Deformation Measurement of Notched Structure Using Global-local Multi-DIC System (전역-국부 다중 DIC 시스템을 이용한 노치 구조물의 열변형 계측)

  • Xin, Ruihai;Doan, Nguyen Vu;Goo, Nam Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.617-626
    • /
    • 2021
  • During supersonic flight of vehicles, the thermal behavior of structures under high-temperature environment is important for thermal-structural design. In this study, full-field thermal deformation and stress concentration of the notched structure was performed using global-local multi-digital image correlation (multi-DIC) systems. This techniques were developed and implemented by multi-DIC systems consists of 2D DIC system and 3D DIC system. The specimen was heated in a heating chamber to achieve the thermal expansion behavior. Then the images of structure's deformation and stress concentration at various temperature were recorded and analyzed by multi-DIC system. Afterward, full-field thermal deformation of the notched structure was determined with DIC technique and stress concentration at the notched structure was calculated by further processing. Finite element analysis of the notched structure is performed in ABAQUSTM and the results of the experiments show good agreement with those obtained from simulation. The results achieved in this study show the efficiency of the muilti-DIC method in thermal deformation as well as stress concentration of notched structure.

A Study on the Optimal Shooting Conditions of UAV for 3D Production and Orthophoto Generation (3D 제작과 정사영상 생성을 위한 UAV 최적 촬영 조건 연구)

  • Cho, Jungmin;Lee, Jongseok;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.645-653
    • /
    • 2020
  • Recently studies on how to use the UAV (Unmanned Aerial Vehicle) are actively being conducted, and the National Geographic Information Institute published the 『Work Guidelines for Public Surveying of Unmanned Aerial Vehicles』. However, the guidelines do not provide the optimum shooting conditions required for each application. In this study, we tried to find the suitable shooting conditions for the production of 3D (Three-dimensional) spatial information and orthophoto. To this end, 45 experiments were conducted by various altitudes, overlaps, and camera angles within an above ground level of 150m. For evaluating the 3D modeling by shooting conditions, point densities of 9 verification areas were analyzed, and to evaluate the orthophotos, 1/1,000 digital maps were compared. Considering the quality of the output and the processing time for precise 3D construction, an altitude of 50m, an overlap of 70~80%, and a camera angle of 80~90° are suitable as shooting conditions, and an altitude of 100m and camera angle of 80~90° are suitable for orthophoto generation.

A Study on the Effective Military Use of Drones (드론의 효과적인 군사분야 활용에 관한 연구)

  • Lee, Young Uk
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.61-70
    • /
    • 2020
  • The unmanned aerial vehicle that emerged with the 4th Industrial Revolution attracts attention not only from Korea but also from around the world, and its utilization and market size are gradually expanding. For the first time, it was used for military purposes, but it is currently used for transportation, investigation, surveillance, and agriculture. China, along with the US and Europe, is emerging as a leader in the commercial unmanned aerial vehicle market, and Korea, which has the world's seventh-largest technology in related fields, is striving to promote various technology development policies and system improvement related to unmanned aerial vehicles. Military drones will revolutionize the means of war by using a means of war called an unmanned system based on theories such as network-oriented warfare and effect-oriented warfare. Mobile equipment, including drones, is greatly affected by environmental factors such as terrain and weather, as well as technological developments and interests in the field. Now, drones are being used actively in many fields, and especially in the military field, the use of advanced drones is expected to create a new defense environment and provide a new paradigm for war.

Performance Analysis of the Gamma Guidance Algorithm for Solid Rocket Kick Motors of Upper Stages of Space Launch Vehicles (위성발사체 상단의 고체로켓모터 유도를 위한 Gamma 유도 알고리듬 성능 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.709-716
    • /
    • 2022
  • In this paper the Gamma guidance law, which was used for IUS (Inertial Upper Stage), is applied for solid-motor guidance of a upper stage of a satellite launch vehicle. The RCS (Reaction Control System), which activates after burnout of the upper stage, is employed for the convergence of the guidance algorithm and compensation of velocity errors induced by the solid motor. The algorithm is also simplified by replacing the time-consuming numerical integration process to predict final vehicle states with Keplerian trajectories. The performance of the algorithm is evaluated by conducting 3-DOF computer simulations for off-nominal flight conditions. The numerical results show that Gamma guidance can reduce the orbit injection accuracy in comparison with that obtained by applying open-loop commands.

2019 Incheon FIR Aerial Collision Risk Analysis (2019년도 인천 FIR 공중 충돌 위험도 분석)

  • Jae-young Ryu;Hyeonwoong Lee;Bae-Seon Park;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.476-483
    • /
    • 2021
  • In order to maintain the safety of the airspace with ever increasing traffic volume, it is necessary to thoroughly analyze the collision risk with the current data. In this study, collision risk analysis was conducted using Detect and Avoid (DAA) Well-Clear (DWC) metrics, risk induces developed for the DAA systems of unmanned aerial vehicles. All flights in year 2019 that flew within the Incheon Flight Information Region (FIR) boundary were analyzed using the recorded Automatic Dependent Surveillance-Broadcast(ADS-B) data. High risk regions as well as trends by airports and seasons were identified. The results indicate that the risk is higher around the congested area near Incheon International Airport and Gimpo International Airport. Seasonally, the risk was highest in August that coincides with the Summer vacation period. The result will be useful for the baseline data for various aviation safety enhancement activities such as revision of routes and procedures and training of the field specialists.

Design Study of Digital Map Architecture for AAV (미래형 항공기체(AAV)용 전자지도 아키텍처 설계 연구)

  • Kyung-Chul Choi;Ji-Hun Kim;Nak-Min Choi;Gyong-Hoon Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.393-399
    • /
    • 2024
  • The digital map computer for advanced air vehicles (AAV) must be high-performance, lightweight, portable, and modular. It should receive data on terrain, weather, and obstacles from external modules to display digital maps accurately. This necessitates robust communication capabilities with external devices via an Ethernet interface and the ability to output digital map visuals clearly through an high-defintion multimedia Interface (HDMI) or digital visual interface (DVI) interface. This paper presents the design of both hardware and software architecture that fulfills these critical requirements for an AAV digital map system. Additionally, it establishes the minimum specifications needed and verifies the suitability of the designed digital map computer through rigorous performance measurements and testing. By ensuring these standards, the digital map computer can reliably support the complex navigational needs of AAV, enhancing operational efficiency and safety.