• Title/Summary/Keyword: Flight control

Search Result 1,409, Processing Time 0.025 seconds

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

Mission Planning and Control Analysis Algorithms for the Safe Flight of an Unmanned Aerial Vehicle (무인항공기의 안전한 운항을 위한 임무계획/통제 분석 기법)

  • Ryu, Chul-Hyung;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.71-77
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is generally flied via a pre-planned flight path or real-time commands by an operator. To succeed in an assigned mission, analysis such as the line-of-sight analysis for communication between UAV and a ground data terminal should be performed. In this paper, various analysis algorithms which are performed by a ground control station in pre-flight and in-flight phases, are proposed for the safe flight of UAV. Note that the proposed algorithms can be applied to most UAV systems.

A Study on Establishment of Civil UAV's Flight Test Operation Procedures for Goheung Flight Test Aerodrome (국가 비행종합성능시험장에서의 민간 무인항공기 비행시험 운용절차 수립에 관한 연구)

  • Lim, Ji-Sung;Park, Dae-Jin;Jeon, Hyun-Woo;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.170-176
    • /
    • 2017
  • In recent years, Unmanned Aerial Vehicles (UAVs) were actively developed in various fields. In development process of UAVs, flight test is performed to ensure that minimum safety requirements and technical requirements are met. By constructing flight test infrastructure such as takeoff and landing facilities, operation procedure, and equipments, flight test can be performed effectively. In this paper, operation procedures of civil UAV's flight test are proposed. The procedures proposed are composed by two main steps: first, planning and permitting procedure of flight test. Secondly, execution and control procedure of flight test.

Automated flight control system design using multi-objective optimization (다목적 최적화를 이용한 비행제어계 설계 자동화)

  • Ryu, Hyuk;Tak, Min-Je
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1296-1299
    • /
    • 1996
  • This paper proposes a design automation method for the flight control system of an aircraft based on optimization. The control system design problem which has many specifications is formulated as multi-objective optimization problem. The solution of this optimization problem should be considered in terms of Pareto-optimality. In this paper, we use an evolutionary algorithm providing numerous Pareto-optimal solutions. These solutions are given to a control system designer and the most suitable solution is selected. This method decreases tasks required to determine the control parameters satisfying all specifications. The design automation of a flight control system is illustrated through an example.

  • PDF

Robust Autopilot Design for Nonsquare Flight Systems (비정방 비행 시스템에 대한 강인한 자동조종장치 설계)

  • 김종식;정성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1123-1131
    • /
    • 1993
  • A robust controller is proposed to design a flight autopilot for lateral motion control. The control system has two control loops in order to meet the performance and to maintain the stability-robustness for a nonsquare flight system with uncertain aerodynamic variations and disturbance. One is designed via linear quadratic Gaussian with loop transfer recovery(LQG/LTR) design methodology for the inner loop. The other is designed via proportional controller design method for the outer loop. To show the effectiveness of this control system, it is compared with the LQG/LTR control system for a square flight system and is analyzed for the performance/stability-robustness to model uncertainties and disturbance via wind gusts. It is found that the proposed control system has good heading command-following performance under allowable sideslip angle in spite of model uncertainties and disturbance.

A Study on the Controller Design of the Flight Control System Using MRAC Methods (MRAC 방식을 이용한 비행체 조종장치의 제어기 설계에 관한 연구)

  • Byung-Chul Kwak;Hai-Won Yang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.171-179
    • /
    • 1988
  • This paper deals with the controller design of the flight control system using the model reference adaptive control approach. The structure of the adaptive control system is based on the structure suggested by NARENDRA and VALAVANI. In particular, the problem is considered in case of the relative degree n=2 of plant. The flight control system is single-input single-output system, and the control input is given from the input-output data of the referencemodel and plant. For the analysis of the designed control system, thesimulation is perfarmed in cases of analog plant and analog plant with flight motion table, and reviewed.

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.

QFT application on force controller design for aircraft control surface load simulator (항공기 조종면 부하재현 구동장치의 force control)

  • 남윤수;이진영;이기두
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1684-1687
    • /
    • 1997
  • A dynamic load simulator which can reproduce on-ground the hinge moment of aircraft control surface is and essential rig for the loaded performance test of aircraft test of aircraft acutation system. The hinge moment varies wide in the aricraft flight enveloped depending on specific flight condition and maneuvering status. To replicate the wide spectrum of this hinge moment variation within some accuracy bounds, a force controller is designed based on the Quantiative Feedback Theory (AFT). Through the analysis on hinge moment dynamics, a design specification for the force controller is suggested. The efficacy of QFT force controller is verivied by simulation, in which combined aricraft dynamics/flight control law and hydraulic actuation system dynamics of aircraft control surface are considered.

  • PDF

Model Following Reconfigurable Flight Control System Design Using Direct Adaptive Scheme (직접 적응기법을 이용한 모델추종 재형상 비행제어시스템 설계)

  • 김기석;이금진;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • A new reconfigurable model following flight control method based on direct adaptive scheme is presented. Using the timescale separation principle, both the inner-loop and the outer-loop states are controlled simultaneously. For the timescale separation assumption to be satisfied, the inner-loop model dynamics is set to be fast whereas the outer-loop model dynamics is set to be relatively slow. The stability and convergence of the proposed control law is proved by Lyapunov theorem. One of the merits of the proposed reconfigurable controller is that the FDI process and the persistent input excitation are not necessary, which is suitable for the flight control system. To evaluate the reconfiguration performance of the proposed control method, numerical simulation is performed using six degree-of-freedom nonlinear dynamics.

Dynamic Model and P-PD Control based Flight Performance Evaluation for Hexa-Rotor Type UAV (헥사로터형 무인기의 모델링과 P-PD기반 비행성능평가)

  • Jin, Taeseok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1074-1080
    • /
    • 2015
  • In the last decades, the increasing interest in unmanned aerial vehicle(UAV) for military, surveillance, and rescue applications made necessary the development of flight control theory and body structure more and more efficient and fast. In this paper, we describe the design and performance of a prototype hexarotor UAV platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, dynamic modeling and simulation in the hexarotor helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(ARM-cortex) board. The P-PD control algorithm was used to control the hexarotor. We used the Matlab software to help us to tune the P-PD control parameters for quick response and minimizing the fluctuation. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.