• Title/Summary/Keyword: Flight Trajectory

Search Result 238, Processing Time 0.022 seconds

Validation of Mid Air Collision Detection Model using Aviation Safety Data (항공안전 데이터를 이용한 항공기 공중충돌위험식별 모형 검증 및 고도화)

  • Paek, Hyunjin;Park, Bae-seon;Kim, Hyewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.37-44
    • /
    • 2021
  • In case of South Korea, the airspace which airlines can operate is extremely limited due to the military operational area located within the Incheon flight information region. As a result, safety problems such as mid-air collision between aircraft or Traffic alert and Collision Avoidance System Resolution Advisory (TCAS RA) may occur with higher probability than in wider airspace. In order to prevent such safety problems, an mid-air collision risk detection model based on Detect-And-Avoid (DAA) well clear metrics is investigated. The model calculates the risk of mid-air collision between aircraft using aircraft trajectory data. In this paper, the practical use of DAA well clear metrics based model has been validated. Aviation safety data such as aviation safety mandatory report and Automatic Dependent Surveillance Broadcast is used to measure the performance of the model. The attributes of individual aircraft track data is analyzed to correct the threshold of each parameter of the model.

Optimal Soft Landing Guidance and Attitude Control for Reusable Launch Vehicles (재사용 발사체를 위한 최적 연착륙 유도 및 자세 제어 연구)

  • Jeon, Ho-Young;Cho, Jun-Hyon;Kim, Jong-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.251-257
    • /
    • 2022
  • We formulated the convex optimization based minimum energy soft landing problem for reusable launch vehicles, and obtained the minimum time trajectory via the bisection search. In order to implement the the optimal guidance command and complete the flight control architectures on the soft landing stage, we designed the classical attitude control loops, and formulated and solved the optimal actuator allocation problem. The obtained soft landing guidance performance was analyzed via nonlinear 6-DOF simulation.

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

Implementation of Airborne Multi-Function Radar Including Attitude Maneuvering (자세 기동을 고려한 항공기 탑재 다기능 레이다 통합 시뮬레이터 구현)

  • Ko, Jae-Youl;Park, Soon-Seo;Choi, Han-Lim;Ahn, Jae-Myung;Lee, Sung-Won;Lee, Dong-Hui;Yoon, Jung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2017
  • In this paper, a simulation test bed is presented which operates to provide full-scale simulation of airborne multi-function phased array radars. This simulation test bed provides a capability to evaluate the target tracking performance. To realize aircraft operation scenario, we developed 6DOF aircraft dynamics model which can generate trajectories and attitude of an aircraft. This procedure includes steady state flight trim search, autopilot design, and aircraft guidance command design. Also, the radar-environment integrated simulator includes target detection/measurement model and tracking filter. Developed simulator is validated by creating an air-to-air scenario.

Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part I. Optimal Control Formulation and Numerical Methods (Indirect Method를 이용한 헬리콥터 기동비행 해석 - Part I. 최적제어 문제의 정식화와 수치해법)

  • Kim, Chang-Joo;Yang, Chang-Deok;Kim, Seung-Ho;Hwang, Chang-Jeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.22-30
    • /
    • 2008
  • This paper deals with the nonlinear optimal control approach to helicopter maneuver problems using the indirect method. We apply a penalty function to the deviation from a prescribed trajectory to convert the system optimality to an unconstrained optimal control problem. The resultant two-point boundary value problem has been solved by using the multiple-shooting method. This paper focuses on the effect of the number of shooting nodes and initialization methods on the numerical solution in order to define the minimum number of shooting nodes required for numerical convergence and to provide a method increasing convergence radius of the indirect method. The results of this study can provide an approach to improve numerical stability and convergence of the indirect method when we solve the optimal control problems of an inherently unstable helicopter system.

The Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part II. Applicability of High Fidelity Helicopter Models (Indirect Method를 이용한 헬리콥터 기동비행 해석 - Part II. High Fidelity 헬리콥터 모델링의 사용 가능성)

  • Kim, Chang-Joo;Yang, Chang-Deok;Kim, Seung-Ho;Hwang, Chang-Jeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • This paper deals with the nonlinear optimal control approach to helicopter maneuver problems using the indirect method. We apply a penalty function to the integral deviation from a prescribed trajectory to convert the system optimality to an unconstrained optimal control problem. The resultant two-point boundary value problem has been solved by using a multiple-shooting method. This paper focuses on the model selection strategies to resolve the problem of numerical instability and high wait time when a high fidelity model with rotor dynamics is applied. Four different types of helicopter models are identified, two of which are linear models with or without rotor models, as well as two models which include the nonlinear mathematical model for rotor in its formulation. The relative computation time and the number of function calls for each model are compared in order to provide a guideline for the selection of helicopter model.

Drag reduction for payload fairing of satellite launch vehicle with aerospike in transonic and low supersonic speeds

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.371-385
    • /
    • 2020
  • A forward-facing aerospike attached to a payload fairing of a satellite launch vehicle significantly alters its flowfield and decreases the aerodynamic drag in transonic and low supersonic speeds. The present payload fairing is an axisymmetric configuration and consists of a blunt-nosed body along with a conical section, payload shroud, boat tail and followed by a booster. The main purpose of the present numerical simulations is to evaluate flowfield and assess the performance of aerodynamic drag coefficient with and without aerospike attached to a payload fairing of a typical satellite launch vehicle in freestream Mach number range 0.8 ≤ M ≤ 3.0 and freestream Reynolds number range 33.35 × 106/m ≤ Re ≤ 46.75 × 106/m whichincludes the maximum aerodynamic drag and maximum dynamic conditions during ascent flight trajectory of the satellite launch vehicle. A numerical simulation has been carried out to solve time-dependent compressible turbulent axisymmetric Reynolds-averaged Navier-Stokes equations. The closure of the system of equations is achieved using the Baldwin-Lomax turbulence model. The aerodynamic drag reduction mechanism is analysed employing numerical results such as velocity vector plots, density and Mach contours in conjunction with the experimental flow visualization pictures. The variations of wall pressure coefficient over the payload fairing with and without aerospike are exhibiting different kind of flowfield characteristics in the transonic and low supersonic speeds. The numerically computed results are compared with schlieren pictures, oil flow patterns and measured wall pressure distributions and exhibit good agreement between them.

Control Algorithm for Stable Galloping of Quadruped Robots on Irregular Surfaces (비평탄면에서의 4 족 로봇의 갤로핑 알고리즘)

  • Shin, Chang-Rok;Kim, Jang-Seob;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.659-665
    • /
    • 2010
  • This paper proposes a control algorithm for quadruped robots moving on irregularly sloped uneven surfaces. Since the body balance of a quadruped robot is controlled by the forces acting on its feet during touchdown, the ground reaction force (GRF) is controlled for stable running. The desired GRF for each foot is generated on the basis of the desired galloping pattern; this GRF is then compared with the actual contact force. The difference between the two forces is used to modify the foot trajectory. The desired force is realized by considering a combination of the rate change of the angular and linear momenta at flight. Then, the amplitude of the GRF to be applied at each foot in order to achieve the desired linear and angular momenta is determined by fuzzy logic. Dynamic simulations of galloping motion were performed using RecurDyn; these simulations show that the proposed control method can be used to achieve stable galloping for a quadruped robot on irregularly sloped uneven surfaces.

The Development of HILS and Test Equipment for Millimeter-Wave (Ka-Band) Seeker's Test and Evaluation (밀리미터파 탐색기 시험 평가를 위한 HILS 및 시험 장비 개발)

  • Song, Sung-Chan;Na, Young-Jin;Yoon, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • This paper describes the developed HILS and test equipment in order to test the performances of MMW(Millimeter-Wave) seeker which can detect and track a high speed of short-range ballistic missile and aircraft. This system is used to 141 horn antenna array, array switching, and gain and phase control algorithm to simulate various kind of targets and trajectory of high speed and maneuver moving target. In addition, it simulates not only velocity and range for these targets but also clutter and jamming environments. System configuration and implementation and the measurement results of major subsystems such as target motion simulator, simulation signal generator, high speed data aquisition unit, and central control unit are presented. These systems could verify the detection and tracking performance of MMW seeker through dynamic real-time test based on simulation flight scenario.