• Title/Summary/Keyword: Flight Test Program

Search Result 105, Processing Time 0.023 seconds

Development of a Design Program for Instrument Flight Procedure (계기비행절차 설계 프로그램 개발)

  • Song, Jae-Hoon;Kim, Hyuk;Jung, Hong-Ki;Lee, Jang-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.185-193
    • /
    • 2014
  • In this study, development process of a design program for Instrument Flight Procedure (IFP) is briefly described. Survey results and corresponding analysis are shown to enhance a market competence of the deliverables. Standards and regulations for IFP design are analyzed to derive the system requirements. Detail development processes and test procedures are explained.

Efficiency Estimation on Propulsion System of an Electric Powered UAV (전기동력 무인항공기의 추진시스템 효율 추정에 관한 연구)

  • Ahn, Il-Young;Yang, Yong-Man;Ju, Young-Chul;Park, SangHyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In the present study, we conducted the research on the high efficiency propulsion system for the development of long-endurance UAV with an electric propulsion system. For the long endurance UAV, fair aerodynamic characteristics with the high efficiency of the propulsion system is required because the flight power and the duration time of the long-endurance UAV vary greatly depending on the efficiency of the propulsion system. Therefore, in this study, the tracking program which records the performance of motor, propeller was developed because of their wide variation in the efficiency depending on the using condition, and records from the existing flight test program were utilized to check the accuracy of the program we had developed. For the development of future long-endurance solar UAV, we confirmed the applied voltage of motor, the optimal rotation of propeller and the gear ratio of reduction gear in order to get the highest efficiency on the propulsion system at the optimal flying condition.

Development of Operational Flight Program for Avionic System Computer (항공전자시스템컴퓨터 탑재소프트웨어 개발)

  • Kim, Young-Il;Kim, Sang-Hwan;Lim, Heung-Sik;Lee, Sung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.104-112
    • /
    • 2005
  • This paper presents the technique to develop an operational flight program(OFP) of avionic system computer(ASC) which integrates the avionics control, navigation and fire control and provides informations for flight, navigation and weapon aiming missions. For the development of the OFP of ASC, two i960KB chips are used as central processing units board and standard computer interface library(SCIL) which is built in house is used. The Irvine compiler corporation(ICC) integrated development environment(IDE) and the programming language Ada95 are used for the OFP development. We designed the OFP to a computer software configuration item(CSCI) which consists of to three parts for independency of software modules. The OFP has been verified through a series of flight tests. The relevant tests also have been rigorously conducted on the OFP such as software integrated test, and ground functional test.

Development of a Component Based Helicopter Simulation Program (요소 기반의 헬리콥터 시뮬레이션 프로그램 개발)

  • Shin, Jae-Hwa;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.548-555
    • /
    • 2007
  • Typical helicopter simulation programs rely on differential equations of a closed form. However, since these equations are derived using various assumptions, their usefulness is limited to small flight regions and specific model types. This paper presents a component based rotorcraft simulation program. The program adopts methods of multi-body dynamics and is written in an object-oriented programming language. The program was validated using an AH-1G helicopter simulation. The trim results are well matched with flight test data. It is also shown that program is capable of running in real-time on a desktop computer.

Analysis and Flight Test of XKO-1 Store Separation (저속통제기 외부장착물 분리해석 및 비행시험)

  • Lee, Seung-Soo;Kim, Sang-Jin;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.24-29
    • /
    • 2004
  • In this paper, we summarize the results of free drop wind tunnel test, separation analysis and flight test in order to verify the safety during the separations of an external fuel tank and the LAU-131 rocket launcher from XKO-l. The wind tunnel test was conducted to show the safety in free drop of the stores and to gather the trajectory data for fine tune of MSAP(Multi-body Separation Analysis Program). The enhanced MSAP was then used to predict the trajectories of the stores with and without the ejector forces. A correlation of MSAP results for free drop case was also made to show the safety of jettison with the free drop type bomb rack. Moreover, the flight test was conducted. and its results were compared to analysis results. Finally, the safe jettison boundary was determined from the flight test.

Design and Implementation of UAV's Autopilot Controller

  • Lee, Jeong-Hwan;Lee, Ki-Sung;Jeong, Tae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.52-56
    • /
    • 2004
  • Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircraft by inputted program in advance or artificial intelligence. In this study Aileron and Elevator are used to control the movement of airplane for horizontal and vertical flights about its longitudinal and lateral axis. In an introduction, the drone was linearly modeled by extracting aerodynamic parameter through flight test and simulation, lift and drag coefficient corresponding to angle of attack, changes of pitching moment coefficient. In the main subject, the flight simulation was performed after constructing hardware using TMS320F2812 from TI company and PID with lateral and longitudinal controller for horizontal and vertical flights. Flying characteristics of two system were estimated and compared through real flight test with hardware equipped algorithm and adaptive algorithm that was applied to consider external factors such as turbulence. In conclusion the control performance of the controller with proposed algorithm was streamlined at lateral and longitudinal controller respectively, we will discuss guidance command to pass way point.

  • PDF

Estimation of Ground Clutter Reflectivity based on the CFT(Captive Flight Test) (항공기 탑재 시험을 통한 지상 클러터 반사계수 추정)

  • Son, Chang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.87-95
    • /
    • 2006
  • The performance of a microwave missile seeker and radar operating in an air-to-air look-down mode is strongly influenced by the presence of ground clutter In order to correctly account for the effects of ground clutter, it is required to develop a model capable of representing clutter characteristics as a function of range and/or frequency. In this paper, a program to estimate the clutter reflectivity for various ground conditions is developed, using the actually measured data and the data available from open literatures. In addition, clutter characteristics measured for various ground conditions such as sea, agricultural area, urban city and industrial area through the captive flight tests are presented.

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

Development of Operational Flight Program for Stores Management Computer (무장관리컴퓨터 탑재소프트웨어 개발)

  • Lee, Sang Cheol;Kim, In Gyu;Kim, Yeong Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.124-133
    • /
    • 2003
  • We propose an application of the Object-Oriented design methodology to develop operational flight program(OFP) for stores management computer(SMC) which manages and controls stores inventory, stores activation, launch for missiles, and release of the conventional weapons. For the development of SMC, a military version of PowerPC 603e is used as a central processing unit board and VxWorks real-time operating system is used. The Tornado software development environment(SDE) and the programming language Ada95 are used for OFP development. We design three layerd in the OFP for the independency of the software modules. An avionics system computer(ASC) simulator and a test bench are developed for the SMC integration test and verification test. And the tests are rigorously and successfully conducted.

Design Study for KSLV Integrated Power Plant Test Facility

  • Kang, Sun-Il;Lee, Jung-Ho;Kim, Young-Han;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.573-576
    • /
    • 2004
  • KARI is achieving the KSLV program according to National Space Technology Development Program. In this paper, the authors are intended to introduce the Integrated Power Plant (abb. IPP) test facility which will be constructed for the variety of tests on KSLV program. IPP test facility refers to comprehensive testing equipment for liquid rocket launch vehicle. Using this facility, KARl can verify the adaptiveness of parts and subsystems for launch vehicle and finally can qualify the system characteristics of launch vehicle doing kinds of test including hot firing test. Using this facility, KARI can simulate the vehicle launching circumstances and it make to predict the performance of launch vehicle when its flight test.

  • PDF