• Title/Summary/Keyword: Flight Speed

Search Result 533, Processing Time 0.024 seconds

Comparative Analysis of Open- Spike between Excellent and Non-excellent Players in Volleyball (배구 우수선수와 비우수선수간의 오픈 스파이크 동작의 비교 분석)

  • Kim, Chang-Bum;Kim, Young-Suk;Shin, Jun-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.253-264
    • /
    • 2003
  • This study aims at finding the structure of spike technique by analysing comparatively the spike action by excellent and by non-excellent players throughout the section from a flying jump to the time of landing for the correct analysis of spike action and tries to help athletes and coaches to execute a scientific training. For the objected person of this study, six of H College athletes three of excellent athletes and three of non-excellent athletes, presently registered as athlete with the Korea Volleyball federation) were chosen, and the factors of analysis were analysed upon performance time of action by section, human body centered displacement, change of articulation angle, speed change of articulation of the upper limbs, uniformity of the articulation of the upper limbs upon impact, etc. The conclusion of this study is as follow: 1. In the time required for taking action, it shows to take $1.067{\pm}0.057$ seconds for the group of excellent athletes and $1.034{\pm}0.033$ seconds for the group of non-excellent athletes. Although there was not big difference between two groups in the performance time of action, it showed that the group of excellent athletes takes longer compared to the group of non-excellent athletes. And it was found by the result of this study that the group of excellent athletes stays longer in the duration of flight. 2. In the displacements of horizontal movement and vertical movement, it was found that the group of excellent athletes have moved more than the group of non-excellent athletes in the horizontal movement of the center of human body 3. In the angles of wrist and knee, it was found that the excellent athletes have shown little than the non-excellent athletes in the entire sections, but that in the angle of elbow, the non-excellent athletes have shown bigger than the excellent athletes.. 4. In the speed of the articulation of the upper limbs upon impact, it was found that the group of excellent athletes have shown bigger than the group of non-excellent athletes, and that in the maximum value of the articulation of the upper limbs, the maximum value for the hand was indicated upon impact and that forearm and upper arm have shown the maximum value just before the impact. 5. In the uniformity of articulation of the upper limbs at the time of impact, the group of excellent athletes showed bigger than the group of non-excellent athletes in all the articulations.

ESTIMATION OF INTRINSIC WAVE PARAMETERS AND MOMENTUM FLUXES OF MESOSPHERIC GRAVITY WAVES OVER KOREA PENINSULA USING ALL-SKY CAMERA AND FABRY-PEROT INTERFEROMETER (전천 카메라와 페브리-페로 간섭계 자료를 이용한 한반도 상공 중간권 중량파의 고유파동계수 및 운동량 플럭스 산출)

  • Chung, Jong-Kyun;Kim, Yong-Ha;Won, Young-In;Jee, Gun-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.327-338
    • /
    • 2007
  • We estimate the momentum fluxes of short-period gravity waves which are observed in the OI 557.7 nm nightglow emission with all-sky camera at Mt. Bohyun ($36.2^{\circ}\;N,\;128.9^{\circ}\;E$) in Korea. The intrinsic phase speed ($C_{int}$), the intrinsic period (${\tau}_{int}$), and vertical wavelength (${\lambda}_z$) are also deduced from the horizontal wavelength (${\lambda}_h$), observed period (${\tau}_{ob}$), propagation direction (${\phi}_{ob}$), observe phase speed (${\upsilon}_{ob}$) of the gravity wave on the all-sky images. The neutral winds to deduce intrinsic wave parameters are measured with Fabry-Perot interferometer on Shigaraki ($34.8^{\circ}\;N,\;13.1^{\circ}\;E$) in Japan. We selected 5-nights of observations during the period between July 2002 and December 2006 considering of the weather and instrument conditions in two observation sites. The mean values of intrinsic parameter of gravity waves are $({\tau}_{int})\;=\;12.9\;{\pm}\;6.1\;m/s,\;({\lambda}_z)\;=\;12.9\;{\pm}\;6.5,\;and\;(C_{int})\;=\;40.6\;{\pm}\;11.6\;min$. The mean value of calculated momentum fluxes for four nights besides of ${\lambda}_z\;<\;6\;km$ is $12.0\;{\pm}\;15.2\;m^2/s^2$. It is needed the long-term coherent observation to obtain typical values of momentum fluxes of the mesospheric gravity waves using all-sky camera and the neutral wind measurements.

Improvement of Altitude Measurement Algorithm Based on Accelerometer for Holding Drone's Altitude (드론의 고도 유지를 위한 가속도센서 기반 고도 측정 알고리즘 개선)

  • Kim, Deok Yeop;Yun, Bo Ram;Lee, Sunghee;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.473-478
    • /
    • 2017
  • Drones require altitude holding in order to achieve flight objectives. The altitude holding of the drone is to repeat the operation of raising or lowering the drone according to the altitude information being measured in real-time. When the drones are maintained altitude, the drone's altitude will continue to change due to external factors such as imbalance in thrust due to difference in motor speed or wind. Therefore, in order to maintain the altitude of drone, we have to exactly measure the continuously changing altitude of the drone. Generally, the acceleration sensor is used for measuring the height of the drones. In this method, there is a problem that the measured value due to the integration error accumulates, and the drone's vibration is recognized by the altitude change. To solve the difficulty of the altitude measurement, commercial drones and existing studies are used for altitude measurement together with acceleration sensors by adding other sensors. However, most of the additional sensors have a limitation on the measurement distance and when the sensors are used together, the calculation processing of the sensor values increases and the altitude measurement speed is delayed. Therefore, it is necessary to accurately measure the altitude of the drone without considering additional sensors or devices. In this paper, we propose a measurement algorithm that improves general altitude measurement method using acceleration sensor and show that accuracy of altitude holding and altitude measurement is improved as a result of applying this algorithm.

Analysis and Implication on the International Regulations related to Unmanned Aircraft -with emphasis on ICAO, U.S.A., Germany, Australia- (세계 무인항공기 운용 관련 규제 분석과 시사점 - ICAO, 미국, 독일, 호주를 중심으로 -)

  • Kim, Dong-Uk;Kim, Ji-Hoon;Kim, Sung-Mi;Kwon, Ky-Beom
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.225-285
    • /
    • 2017
  • In regard to the regulations related to the RPA(Remotely Piloted Aircraft), which is sometimes called in other countries as UA(Unmanned Aircraft), ICAO stipulates the regulations in the 'RPAS manual (2015)' in detail based on the 'Chicago Convention' in 1944, and enacts provisions for the Rules of UAS or RPAS. Other contries stipulates them such as the Federal Airline Rules (14 CFR), Public Law (112-95) in the United States, the Air Transport Act, Air Transport Order, Air Transport Authorization Order (through revision in "Regulations to operating Rules on unmanned aerial System") based on EASA Regulation (EC) No.216/2008 in the case of unmanned aircaft under 150kg in Germany, and Civil Aviation Act (CAA 1998), Civil Aviation Act 101 (CASR Part 101) in Australia. Commonly, these laws exclude the model aircraft for leisure purpose and require pilots on the ground, not onboard aricraft, capable of controlling RPA. The laws also require that all managements necessary to operate RPA and pilots safely and efficiently under the structure of the unmanned aircraft system within the scope of the regulations. Each country classifies the RPA as an aircraft less than 25kg. Australia and Germany further break down the RPA at a lower weight. ICAO stipulates all general aviation operations, including commercial operation, in accordance with Annex 6 of the Chicago Convention, and it also applies to RPAs operations. However, passenger transportation using RPAs is excluded. If the operational scope of the RPAs includes the airspace of another country, the special permission of the relevant country shall be required 7 days before the flight date with detail flight plan submitted. In accordance with Federal Aviation Regulation 107 in the United States, a small non-leisure RPA may be operated within line-of-sight of a responsible navigator or observer during the day in the speed range up to 161 km/hr (87 knots) and to the height up to 122 m (400 ft) from surface or water. RPA must yield flight path to other aircraft, and is prohibited to load dangerous materials or to operate more than two RPAs at the same time. In Germany, the regulations on UAS except for leisure and sports provide duty to avoidance of airborne collisions and other provisions related to ground safety and individual privacy. Although commercial UAS of 5 kg or less can be freely operated without approval by relaxing the existing regulatory requirements, all the UAS regardless of the weight must be operated below an altitude of 100 meters with continuous monitoring and pilot control. Australia was the first country to regulate unmanned aircraft in 2001, and its regulations have impacts on the unmanned aircraft laws of ICAO, FAA, and EASA. In order to improve the utiliity of unmanned aircraft which is considered to be low risk, the regulation conditions were relaxed through the revision in 2016 by adding the concept "Excluded RPA". In the case of excluded RPA, it can be operated without special permission even for commercial purpose. Furthermore, disscussions on a new standard manual is being conducted for further flexibility of the current regulations.

  • PDF

Development of flow measurement method using drones in flood season (II) - application of surface velocity doppler radar (드론을 이용한 홍수기 유량측정방법 개발(II) - 전자파표면유속계 적용)

  • Lee, Tae Hee;Kang, Jong Wan;Lee, Ki Sung;Lee, Sin Jae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.903-913
    • /
    • 2021
  • In the flood season, the measurement of the river discharge has many restrictions due to reasons such as budget, manpower, safety, convenience in measurement and so on. In particular, when heavy rain events occur due to typhoons, etc., it is difficult to measure the amount of flood due to the above problems. In order to improve this problem, in this study, a method was developed that can measure the river discharge in a flood season simply and safely in a short time with minimal manpower by combining the functions of a drone and a surface velocity doppler radar. To overcome the mechanical limitations of drones caused by weather issues such as wind and rainfall derived from the measurement of the river discharge using the conventional drone, we developed a drone with P56 grade dustproof and waterproof performance, stable flight capability at a wind speed of up to 36 km/h, and a payload weight of up to 10 kg. Further, to eliminate vibration which is the most important constraint factor in the measurement with a surface velocity doppler radar, a damper plate was developed as a device that combines a drone and a surface velocity Doppler radar. The velocity meter DSVM (Dron and Surface Veloctity Meter using doppler radar) that combines the flight equipment with the velocity meter was produced. The error of ±3.5% occurred as a result of measuring the river discharge using DSVM at the point of Geumsan-gun (Hwangpunggyo) located at Bonghwang stream (the first tributary stream of the Geum River). In addition, when calculating the mean velocity from the measured surface velocity, the measurement was performed using ADCP simultaneously to improve accuracy, and the mean velocity conversion factor (0.92) was calculated by comparing the mean velocity. In this study, the discharge measured by combining a drone and a surface velocity meter was compared with the discharge measured using ADCP and floats, so that the application and utility of DSVM was confirmed.

Vibration Reduction Simulation of UH-60A Helicopter Airframe Using Active Vibration Control System (능동 진동 제어 시스템을 이용한 UH-60A 헬리콥터 기체의 진동 감소 시뮬레이션)

  • Lee, Ye-Lin;Kim, Do-Young;Kim, Do-Hyung;Hong, Sung-Boo;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.443-453
    • /
    • 2020
  • This study using the active vibration control technique attempts to alleviate numerically the airframe vibration of a UH-60A helicopter. The AVCS(Active Vibration Control System) is applied to reduce the 4/rev vibration responses at the specified locations of the UH-60A airframe. The 4/rev hub vibratory loads of the UH-60A rotor is predicted using the nonlinear flexible dynamics analysis code, DYMORE II. Various tools such as NDARC, MSC.NASTRAN, and MATLAB Simulink are used for the AVCS simulation with five CRFGs and seven accelerometers. At a flight speed of 158knots, the predicted 4/rev hub vibratory loads of UH-60A rotor excite the airframe, and then the 4/rev vibration responses at the specified airframe positions such as the pilot seat, rotor-fuselage joint, mid-cabin, and aft-cabin are calculated without and with AVCS. The 4/rev vibration responses at all the locations and directions are reduced by from 25.14 to 96.05% when AVCS is used, as compared to the baseline results without AVCS.

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Evaluate the Accuracy of Drone Photogrammetry Surveying Using Water Reference Points (수상기준점을 활용한 드론 사진측량의 정확도 평가)

  • Kim, Byungwoo;Hong, Soonheon;Oh, Jaehyun;Hwang, Daeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.445-449
    • /
    • 2017
  • Most studies using drone is confined utilization on the ground and regulation. The drone in the water is rarely used in hydrographic surveying because of the limit of flight time and image matching. This paper is the basic research for drone hydrographic photogrammetry. The accuracy of hydrographic photogrammetry, using buoys for water reference point, was evaluated. The accuracy is influenced by the accuracy of the water reference points like the photogrammetry. The position of water reference points set up on water, keep on changing due to various environmental factors such as wind speed and water velocity. The position continuously changed of the water reference points were measured 3 times using Total Station and VRS. Experiments were conducted at two reservoirs in Gimhae City, and the accuracy of the manual image matching using the water reference points is 40 cm and 80 cm. Allowable accuracy of the ocean boundary survey is ${\pm}2m$, the results of this study are fully available. The maximum position error of the water reference point for ensuring accuracy within ${\pm}2m$ is 1.8 m.

Analytical Study for the Safety of the Bird Strike to the Small Aircraft Having a Composite Wing (복합재 주익을 갖는 소형항공기 조류충돌 시 안전성에 관한 해석적 연구)

  • Park, Ill-Kyung;Kim, Seung-Jun;Choe, Ik-Hyun;An, Seok-Min;Yeo, Chan-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The bird strike to small aircraft has not been an issue because of its low speed and usage as a private aircraft. So, the compliance of the bird strike regulation is limited to large fixed-wing aircraft such as the commuter category in FAR Part 23 and the civil aircraft in FAR Part 25, generally. However, the forecast of dramatic increasing of VLJ(Very Light Jet), the usage of a composite material for an aircraft structure and flight time of general aviation due to Air-taxi for the point to point transportation, would rise up the need of bird strike regulations and a safety enhancement in normal and utility categorized aircraft. In this study, the safety of bird strike to small aircraft wing leading edge made of a metal and a composite material were compared using the explicit finite element analysis.