• Title/Summary/Keyword: Flight Speed

Search Result 533, Processing Time 0.025 seconds

Study on Effective Airworthiness Certification Methods and Airworthiness Certification Standards for Aerial Launch Platform using Large Civil Aircraft (대형 민간항공기를 활용한 공중발사 플랫폼의 효율적 감항인증방안 및 감항인증기준 연구)

  • Oh, Yeon-Kyeong;Kim, Suho;Yoo, Min Young;Choi, Seong Hwan;Seo, Hyun Woo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.28-34
    • /
    • 2022
  • In 2021, Virgin Orbit converted a 747-400 aircraft into an air launch platform, and successfully launched it twice in February and July. Compared to the existing ground launch, interest in the air launch is increasing due to its great utility, such as its independence from the launch location or weather, cost reducing factor, shorter launch preparation time, and its benefit pursuant to altitude and speed. Additionally, as small satellites have similar performance to mid/large satellites in the past due to the miniaturization and precision of electronic equipment, small satellite launches are expected to dominate in the future. In this paper, institutional certification methods such as domestic, overseas, civilian and military airworthiness certification regulations/procedures are reviewed to ensure flight safety of aerial projectiles using large domestic civil aircraft, and applicable civil and military airworthiness certification technology standards are reviewed and analyzed. Additionally, we will review and suggest effective airworthiness certification application plans that reflect the reality, and present airworthiness certification standards (draft) for aerial launch vehicles, by analyzing applicable airworthiness certification technical standards when remodeling aerial launch vehicles.

Analysis of Low Altitude Wind Profile Data from Wind Lidar for Drone Aviation Safety (드론의 안전 비행을 위한 윈드라이다 저고도 바람 분석 방법 제시)

  • Kim, Je-Won;Ryu, Jung-Hee;Na, Seong-Jun;Seong, Seong-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.899-907
    • /
    • 2022
  • According to the Unmanned aircraft system Traffic Management (UTM), drones are permitted to fly up to 150m above ground, which is located in the atmospheric boundary layer where there is considerable wind fluctuation due to turbulence. Although it is difficult to predict when turbulence will occur drone aviation safety could be enhanced by having a better understanding of the characteristics of vertical profile of wind in the flight area. We used wind lidar (WIndMast 350M) to observe vertical profiles of wind at the test site for aviation meteorological observation equipment located near Incheon International Airport in July and September, 2022. In this study, we utilized the observed wind profile data to propose a technique for obtaining information that could help improve the drone aviation safety. The Fourier transform analysis is used to evaluate the temporal characteristics of the horizontal wind speed at various vertical levels up to 350m. We also examined the relative contribution of the variance of wind having scales of less than an hour, a crucial scale for drone flight, to the variance of wind having all scales at each vertical altitude for days with and without precipitation.

Object Detection Performance Analysis between On-GPU and On-Board Analysis for Military Domain Images

  • Du-Hwan Hur;Dae-Hyeon Park;Deok-Woong Kim;Jae-Yong Baek;Jun-Hyeong Bak;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.157-164
    • /
    • 2024
  • In this paper, we propose a discussion that the feasibility of deploying a deep learning-based detector on the resource-limited board. Although many studies evaluate the detector on machines with high-performed GPUs, evaluation on the board with limited computation resources is still insufficient. Therefore, in this work, we implement the deep-learning detectors and deploy them on the compact board by parsing and optimizing a detector. To figure out the performance of deep learning based detectors on limited resources, we monitor the performance of several detectors with different H/W resource. On COCO detection datasets, we compare and analyze the evaluation results of detection model in On-Board and the detection model in On-GPU in terms of several metrics with mAP, power consumption, and execution speed (FPS). To demonstrate the effect of applying our detector for the military area, we evaluate them on our dataset consisting of thermal images considering the flight battle scenarios. As a results, we investigate the strength of deep learning-based on-board detector, and show that deep learning-based vision models can contribute in the flight battle scenarios.

A Study on the Threat of North Korean Small Drones (북한 소형 드론 위협 사례에 대한 연구)

  • Kwang-Jae Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.397-403
    • /
    • 2024
  • North Korea's rapidly advancing drone development and operational capabilities have become a significant threat to South Korea's security. The drone incursions by North Korea in 2014, 2017, and 2022 demonstrate the technological advancement and provocative potential of North Korean drones. This study aims to closely analyze the military threats posed by North Korean drones and seek effective countermeasures. The research examines the development level of North Korean drone technology, its military applications, the characteristics and patterns of recent drone incursions, the adequacy and limitations of South Korea's current response systems, and future countermeasures. For this purpose, domestic and international research literature and media reports were reviewed, and specific North Korean drone incursion cases were analyzed. The results indicate that North Korea's small drones possess technological features such as small size, low altitude, low-speed flight, long-duration flight, and reconnaissance equipment. These drones pose threats that can be utilized for reconnaissance, surveillance, surprise attacks, and terrorism. Additionally, South Korea's current response systems reveal limitations such as inadequate detection and identification capabilities, low interception success rates, lack of an integrated response system, and insufficient specialized personnel and equipment. Therefore, this study suggests various technical, policy, and international cooperative countermeasures, including the development of drone detection and identification technologies, the utilization of diverse drone neutralization technologies, the establishment of legal and institutional foundations, the construction of a cooperative framework among relevant agencies, and the strengthening of international cooperation. The study particularly emphasizes the importance of raising awareness of the North Korean drone threat across South Korean society and unifying national efforts to respond to these threats.

Negligence theory of Aviation accident with reference to the japanese aviation accident precedent (항공 사고에서의 과실 이론 - 일본 항공 사고 판례를 중심으로 -)

  • Hwang, Ho-Won;Ham, Se-Hun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.23 no.2
    • /
    • pp.115-136
    • /
    • 2008
  • The development of the aviation technology is beyond the people's imagination. For example, with some exaggeration, If the autopilot engage upon take off, You will realize that you are on the centerline of the foggy JFK runway 13R after 15 hours with only once or twice of intervention. But the more aviation technology develops, the more responsible the pilot will be who has the final authority of the aviation safety. In the JAL 706 accident caused by unidentified reason, the pilot increased pitch abruptly and overrode the control from the autopilot. The result of this process made the death of a flight attendant and some injuries of a few passengers. The district court found the pilot not guilty at the first trial on the ground that the control override was not connected to the possibility of foresight and avoidance of the human death. The pilot was proved to be innocent through the analysis of the DFDR and ADAS that the override did not precede the unidentified pitch up motion. The judicial precedent related to aviation accidents in Korea requires pilots' absolute and extended care compared to the ordinarily prudent or reasonably careful behaviors in the vehicle and medical accidents. Although there is some controversy about the standard care, the care required in the actual operation of high tech aircraft by a pilot should include objective and standard care and be judged by analysis of the scientific data. Although the pilot maintained the unusual hi speed that doesn't have safety margin and descended under turbulence in case of the JAL 706 accident, the court negatived its relation to the cause of pitch up. Also, the override of the control after initial pitch up might have caused the possibility of the death and injury, but the court denied it. Because of this complex cause of the aviation accidents, it is important for a court to figure out the core reason of the event and casual relationship with the pilot Now, It is required that the judgement of negligence in the aviation accidents should include an objective care with scientific data from simulated circumstances(or a simulator) as the Japanese court not from the theory of vehicle's negligence.

  • PDF

A performance study and conceptual design on the ramp tabs of the thrust vector control (추력방향제어장치인 램 탭의 개념설계 및 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Soon-Jong;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF

Ground Altitude Computation Algorithm using Laser Altimeter and GPS for UAV Automatic Take-off and Landing (레이저 고도계 및 GPS를 이용한 무인기의 자동이착륙용 지면고도계산 알고리듬 설계)

  • Cho, Sangook;Choi, Keeyoung;Kim, Sung-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • This paper presents a ground altitude determination algorithm using a laser altimeter and GPS for automatic take-off and landing of UAV. The characteristics of the laser altimeter was analyzed in ground tests and a low-pass filter was designed to reduce the effect of signal interruption due to reflectivity problem. The paper shows that a single sensor cannot measure ground altitude appropriately in terms of reliability and accuracy. To complement shortcomings of the laser altimeter, the linear Kalman filter was designed using DGPS vertical speed. Designed filter was validated and tuned through the steps of simulation, ground test and flight test. It was confirmed that the accuracy for automatic landing is achievable.

Optimal Path Planner Considering Real Terrain for Fixed-Wing UAVs (실제지형을 고려한 고정익 무인항공기의 최적 경로계획)

  • Lee, Dasol;Shim, David Hyunchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1272-1277
    • /
    • 2014
  • This article describes a path planning algorithm for fixed-wing UAVs when a real terrain should be considered. Nowadays, many UAVs are required to perform mission flights near given terrain for surveillance, reconnaissance, and infiltration, as well as flight altitude of many UAVs are relatively lower than typical manned aerial vehicles. Therefore, real terrain should be considered in path planning algorithms of fixed-wing UAVs. In this research, we have extended a spline-$RRT^*$ algorithm to three-dimensional planner. The spline-$RRT^*$ algorithm is a $RRT^*$ based algorithm, and it takes spline method to extend the tree structure over the workspace to generate smooth paths without any post-processing. Direction continuity of the resulting path is guaranteed via this spline technique, and it is essential factor for the paths of fixed-wing UAVs. The proposed algorithm confirm collision check during the tree structure extension, so that generated path is both geometrically and dynamically feasible in addition to direction continuity. To decrease degrees of freedom of a random configuration, we designed a function assigning directions to nodes of the graph. As a result, it increases the execution speed of the algorithm efficiently. In order to investigate the performance of the proposed planning algorithm, several simulations are performed under real terrain environment. Simulation results show that this proposed algorithm can be utilized effectively to path planning applications considering real terrain.

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Numerical and Experimental Investigations of Dynamic Stall

  • Geissler, Wolfgang;Raffel, Markus;Dietz, Guido;Mai, Holger
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.19-19
    • /
    • 2009
  • Dynamic Stall is a flow phenomenon which occurs on the retreating side of helicopter rotor blades during forward flight. It also occurs on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. Dynamic Stall limits the speed of the helicopter and its manoeuvrability and limits the amount of power production of wind turbines. Extensive numerical as well as experimental investigations have been carried out recently to get detailed insight into the very complex flow structures of the Dynamic Stall process. Numerical codes have to be based on the full equations, i.e. the Navier-Stokes equations to cover the scope of the problems involved: Time dependent flow, unsteady flow separation, vortex development and shedding, compressibility effects, turbulence, transition and 3D-effects, etc. have to be taken into account. In addition to the numerical treatment of the Dynamic Stall problem suitable wind tunnel experiments are inevitable. Comparisons of experimental data with calculated results show us the state of the art and validity of the CFD-codes and the necessity to further improve calculation procedures. In the present paper the phenomenon of Dynamic Stall will be discussed first. This discussion is followed by comparisons of some recently obtained experimental and numerical results for an oscillating helicopter airfoil under Dynamic Stall conditions. From the knowledge base of the Dynamic Stall Problems, the next step can be envisaged: to control Dynamic Stall. The present discussion will address two different Dynamic Stall control methodologies: the Nose-Droop concept and the application of Leading Edge Vortex Generators (LEVoG's) as examples of active and passive control devices. It will be shown that experimental results are available but CFD-data are only of limited comparison. A lot of future work has to be done in CFD-code development to fill this gap. Here mainly 3D-effects as well as improvements of both turbulence and transition modelling are of major concern.

  • PDF