• 제목/요약/키워드: Flight Software

검색결과 357건 처리시간 0.028초

Design and Development of an Advanced Real-Time Satellite Simulator

  • Kang, Ja-Young;Kim, Jae-Moung;Chung, Seon-Jong
    • ETRI Journal
    • /
    • 제17권3호
    • /
    • pp.1-16
    • /
    • 1995
  • An advanced real-time satellite simulator (ARTSS) has been developed to support the ground operations activities of the ETRI satellite control system, such as testing of the system facilities, validation of flight control procedures, verification of satellite commands as well as training of the ground operators. The design of ARTSS is based on the top-down approach and makes use of a modular programming to ensure flexibility in modification and expansion of the system. Graphics-based monitoring and control facilities enhance the satellite simulation environment. The software spacecraft model in ARTSS simulates the characteristics of a geostationary communication satellite using a momentum bias three-axis stabilization control technique. The system can be also interfaced with a hardware payload subsystem such as Ku-band communication transponder to enhance the simulator capability. Therefore, ARTSS is a high fidelity satellite simulation tool that can be used on low-cost desk top computers. In this paper, we describe the design features, the simulation models and the real-time operating functions of the simulator.

  • PDF

직접식 관성유도시스템의 성능 분석 (Performance analysis of an explicit guidance system)

  • 최재원;윤용중;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.419-424
    • /
    • 1991
  • In this paper, a fuel minimizing closed loop explicit inertial guidance algorithm for the orbit injection of a rocket is developed. In this formulation, the fuel burning rate and magnitude of thrust are assumed constant, and the motion of a rocket is assumed to be subject to the average inverse-square gravity, but with negligible atmospheric effects. The optimum thrust angle for obtaining the given velocity vector in the shortest time with minimizing fuel consumption is first determined, and then the additive thrust angle for targeting the final position vectors is determined by using Pontryagin's Maximum Principle. To establish the real time processing, many algorithms of the onboard guidance software are simplified. Simulations for the explicit guidance algorithm, for the 2nd-stage flight of the N-1 rocket, are carried out. The results show that the guidance algorithm works well in the presence of the maximum .+-.10 % initial velocity and altitude error. The effects of the guidance cycle time is also examined.

  • PDF

허브 공항의 환승객을 고려한 최적 주기장 배정에 관한 연구 (A Study on the Optimal Gate Assignment with Transit Passenger in Hub Airport)

  • 이희남;이창호
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.402-408
    • /
    • 2003
  • Now many major airports in the world which operate strategic alliance or Hub & Spoke system have met capacity restriction and confusion problems. And the time and the walking distance for boarding to flight are important standard to measure customer convenience. And the effective gate assignment guarantees customers convenience as well as increasing airport capacity without expanding established airport equipments. So it can be a major concern to manage airports. So this paper formulate gate assignment problem in the hub airport not quadratic assignment problem but a improved single-period integer problem which is minimize local and transit passengers I walking distance. As a result, this study will present a method producing optimal gate assignment result using optimization software. We use real flights and gates data in the national airport, so we will compare a assignment results with a real airport assignment results and previous researches and analyze those results.

  • PDF

비평탄면에서의 4 족 로봇의 갤로핑 알고리즘 (Galloping Algorithm of Quadruped Robots on Irregular Surface)

  • 신창록;박종현;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.888-893
    • /
    • 2008
  • In This paper proposes the control algorithm for quadruped robots on irregularly sloped uneven surface. Body balance is important in stable running locomotion. Since the body balance is determined by the forces applied at the feet during touchdown phase, the ground reaction force is controlled for stable running. To control the forces at each foot, the desired force is generated. The generated desired force is compared with actual contact force, then, the difference between them modifies the foot trajectory. The desired force is generated by combination of the rate change of the angular and linear momentum at flight. Then the rate change of momentum determines each force distribution. The distribution of the force is carried out by fuzzy logic. The computer simulation is carried out with the commercial software RecurDyn$^{(R)}$. Dynamic model simulation program show that the stable running on the irregularly sloped uneven surface are accomplished by the proposed method.

  • PDF

저궤도위성 탑재소프트웨어 개발 (Flight Software Design and Development for Low Earth Orbit Satellite)

  • 강수연;이재승;최종욱;이종인
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.1421-1424
    • /
    • 2005
  • 저궤도 위성인 다목적실용위성 2호의 컴퓨터 시스템은 3개 프로세서로 구성된 분산처리 구조이며 프로세서와 프로세서, 프로세서와 주변 장치들과의 통신은 MIL-STD-1553B 버스를 통해 이루어진다. 이들 3개 프로세서들 상에서 실행되는 탑재소프트웨어는 위성의 하드웨어 및 주변 입출력 장치들을 제어 및 관리한다. 그리고 위성의 결함을 관리하는 기능과 비상시에는 지상과의 연결 없이 위성을 자동제어 하는 기능들 또한 탑재소프트웨어에 구현되어져있다. 본 논문에서는 저궤도 위성인 다목적실용위성-2호의 임무를 수행하기 위한 탑재소프트웨어의 구성 및 기능, 개발과정과 개발환경을 소개한다.

  • PDF

저궤도 위성용 탑재소프트웨어 개발을 위한 ERC32 프로세서 소개 (An Introduction to ERC32 to Develop Flight Software for LEO Satellites)

  • 이재승;최종욱;채동석;이종인;김학정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.1553-1556
    • /
    • 2005
  • 유럽에서는 위성에 탑재할 고성능 탑재컴퓨터로 MCM-ERC32 보드를 개발하여 사용하고 있다. 이에 한국항공우주연구원에서는 향후 개발되는 저궤도 관측위성에 사용할 고성능 탑재컴퓨터로 MCM-ERC32 를 적용할 예정이다. 현재까지 한국항공우주연구원에서 개발된 저궤도 관측위성은 Intel 계열의 CPU 를 탑재한 컴퓨터를 사용하였으며, MCM-ERC32 에 대한 개발기술은 전무한 상태이다. 따라서, MCM-ERC32 로의 탑재컴퓨터 변경은 전체적인 시스템의 재설계가 요구되며, 이를 이용한 탑재소프트웨어의 개발에도 많은 영향을 미치게 된다. 본 논문에서는 MCM-ERC32 를 이용한 새로운 탑재컴퓨터 시스템에 적용 가능한 탑재소프트웨어 개발을 위해 ERC32 프로세서의 Integer Unit 의 고유한 기능에 대해 소개한다.

  • PDF

Aircraft Waypoint Navigation Control with Neural Network-Based Altitude-Hold Control

  • Lee, Hyunjae;Bang, Hyochoong;Lee, Eunhee;Hong, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.93-102
    • /
    • 2001
  • Flight control design for the autonomous waypoint navigation of aircraft is presented in this study. The waypoints are defined in terms of desired longitude and latitude. The control design is conducted in longitudinal and lateral directions, respectively. The lateral control is based upon coordinated turn strategy for which no sideslip is allowed under the turning maneuver. The longitudinal control is mainly focused on altitude hold during navigation. Neural network control approach is applied to the altitude-hold mode control. Simulation of the proposed control strategy has been performed under various conditions. A graphical simulation tool was developed to visually demonstrate the control technique developed in this study. A method to simulate the gas turbine transient behavior is developed. The basic principles of the method.

  • PDF

발사체 직접식 유도법의 유도성능 분석 (Performance Analysis of an Explicit Guidance Scheme for a Launch Vehicle)

  • 최재원
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.97-106
    • /
    • 1998
  • In this Paper, a fuel minimizing closed loop explicit inertial guidance algorithm for orbit injection of a rocket is developed. In the formulation, the fuel burning rate and magnitude of thrust are assumed constant. The motion of rocket is assumed to be subject to the average inverse-square gravity, but negligible effects from atmosphere. The optimum thrust angle to obtain a given velocity vector in the shortest time with minimizing fuel consumption is first determined, and then the additive thrust angle for targeting the final position vector is determined by using Pontryagin's maximum principle. To establish real time processing, many algorithms of onboard guidance software are simplified. The explicit guidance algorithm is simulated on the 2nd-stage flight of the N-1 rocket developed in Japan. The results show that the explicit guidance algorithm works well in the presence of the maximum $\pm$10% initial velocity and altitude errors, and exhibits better performance than the open-loop program guidance. The effects of the guidance cycle time are also examined.

  • PDF

시스템 안전성평가를 통한 효율적 요건 도출방안 연구 (A Study on the Safety Requirements Establishment through System Safety Processes)

  • 유승우;정진평;이백준
    • 항공우주시스템공학회지
    • /
    • 제7권2호
    • /
    • pp.29-34
    • /
    • 2013
  • Safety requirements for aircraft and system functions include minimum performance constraints for both availability and integrity of the function. These safety requirements should be determined by conducting a safety assessment. The depths and contents of aircraft system safety assessment vary depending on factors such as the complexity of the system, how critical the system is to flight safety, what volume of experience is available on the type of system and the novelty and complexity of the technologies being used. Requirements that are defined to prevent failure conditions or to provide safety related functions should be uniquely identified and traceable through the levels of development. This will ensure visibility of the safety requirements at the software and electronic hardware design level. This paper has prepared to study on promoting the efficiency of establishing hierarchical safety requirements from aircraft level function to item level through system safety processes.

항공기용 배기덕트의 구조적 안정성 검토를 위한 전산유동해석 (Computational fluid analysis of Aircraft Exhaust Duct for Verification of Structural Stability)

  • 이창욱;김원철;박용석;양용준
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.606-608
    • /
    • 2017
  • 터보프롭 엔진의 배기덕트에 구조적 안정성을 검토하기 위해 유동해석을 수행하였다. 항공기의 비행조건에 따라 작용하는 추력과 전단력을 산출하기 위해 배기덕트내의 관내유동과 배기덕트 플랜지 방향의 유동을 Fluent 소프트웨어로 해석을 수행하여 추력, 전단력, 벤딩모멘트 값을 얻을 수 있었다. 해석결과, 허용 하중값을 초과하지 않음을 확인하였다.

  • PDF