• Title/Summary/Keyword: Flight Schedule

Search Result 51, Processing Time 0.024 seconds

Evaluation of the Performance of Re-entry System for the Typical Uncertainties

  • L., Daewoo;C., Kyeumrae;P., Soohong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.4-156
    • /
    • 2001
  • The uncertainties of an atmospheric re-entry flight with respect to stability and controllability are aerodynamic error, measurement error of the angle of attack, variation of dynamic pressure, wind, and trim position of the control surfaces, etc. During hypersonic flight, a future angle of attack is biased from a nominal schedule. In order words, because the angle of attack is estimated from the navigation data, estimation error occurs due to wind, atmospheric density variation, etc. Error models used in this study, include a standard deviation of +-3 sigma, and are the normal distribution of statistics. This paper shows the appraisement of tracking performance onto the reference trajectory, satisfaction of the initial condition of TAEM about the re-entry system.

  • PDF

PREDICTION OF AIRCRAFT FLOW FIELD EFFECT BY DIRECT CALCULATION OF INCREMENTAL COEFFICIENTS (증가 계수의 직접 계산법을 이용한 항공기 유동장 효과의 예측)

  • Kim, Eu-Gene;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.41-46
    • /
    • 2006
  • When new weapons are introduced, the target points estimation is one of the important objectives in the flight test as well as the safe separation. The prediction methods help to design the flight test schedule. However, the incremental aerodynamic coefficients in the aircraft flow field so-called BSE are difficult to predict. Generally, the semiempirical methods such as the grid methods, IFM and Flow TGP using database are used for estimation of BSE. However, these methods are quasi-steady methods using static aerodynamic loads. Nowadays the time-accurate CFD method is often used to predict the store separation event. In the current process, the incremental aerodynamic coefficients in BSE regime are calculated directly, and the elimination of delta coefficients is checked simultaneously. This stage can be used for the initial condition of Flow TGP with freestream database. Two dimensional supersonic and subsonic store separation problems have been simulated and incremental coefficients are calculated. The results show the time when the store gets out of BSE region.

  • PDF

A Comparative Study of Satisfaction of Chinese and Japanese Transit Passengers at Incheon International Airport (인천국제공항에서 환승하는 중국인.일본인의 환승만족도에 대한 차이분석)

  • Yoon, Han-Young;Park, Sung-Sik;Bang, Jang-Kyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.69-82
    • /
    • 2011
  • This paper tried to find out what the main factors are to impact on satisfaction level of transit passengers at Incheon airport. Incheon airport has made lots of transit facilities and services to attract transit passengers from neighboring airports to increase transit rate as high as advanced foreign airports such as Heathrow, Schiphol and Hong Kong. A survey was performed on 450 transit passengers resting at airport transit lounge in airside area. According to the result, it was found out to be significant factors affecting satisfaction of transit that convenience of security screening, price of duty-free product, a direction board & signage and terminal orientation among Chinese transit passengers. On the other hands, it seemed that Japanese transit passengers thought diversity of airline routes, convenient transfer flight schedule, total transit time and terminal orientation are major variables affecting their satisfaction. Considering the effect of demographic factors, Chinese passenger's satisfaction was more affected by age, travel purpose, the number of travel per year and flight destinations. However, Japanese transit passenger's satisfaction was only affected by the flight destinations, especially willing to travel to North America and Europe.

Development of Hardware Design Process Enhancement Tool for Flight Control Computer using Modeling and Simulation (M&S 기반의 비행조종컴퓨터 하드웨어 설계 프로세스 개선을 위한 툴 개발)

  • Kwon, Jong-Kwang;Ahn, Jong-Min;Ko, Joon-Soo;Seung, Dae-Beom;Kim, Whan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1036-1042
    • /
    • 2007
  • It is rather difficult to improve flight control computer(FLCC) hardware(H/W) development schedule due to lack of commercial off-the-self(COTS) tools or target specific tools. Thus, it is suggested to develop an enhanced process utilizing modeling, simulation and virtual reality tools. This paper presents H/W design process enhancement tool(PET) for FLCC design requirements such as FLCC input/output(I/O) signal flow, I/O fault detection, failure management algorithm, circuit logic, PCB assembly configuration and installation utilizing simulation and visualization in virtual space. New tool will provide simulation capability of various FLCC design configuration including shop replaceable unit(SRU) level assembly/dis-assembly utilizing open flight format 3-D modeling data.

Development of UAV Flight Control Software using Model-Based Development(MBD) Technology (모델기반 개발기술을 적용한 무인항공기 비행제어 소프트웨어 개발)

  • Moon, Jung-Ho;Shin, Sung-Sik;Choi, Seung-Kie;Cho, Shin-Je;Rho, Eun-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1217-1222
    • /
    • 2010
  • This paper describes the Model-Based Development(MBD) process behind the flight control software of a close-range unmanned aerial vehicle(KUS-9). An integrated development environment was created using a commercial tool(MATLAB $Simulink^{(R)}$), which was utilized to design models for linear/nonlinear simulation, flight control law, operational logic and HILS(Hardware In the Loop Simulation) system. Software requirements were validated through flight simulations and peer reviews during the design process, whereas the models were verified through the application of a DO-178B verification tool. The integrity of automatically generated C code was verified by using a separate S/W testing tool. The finished software product was embedded on two different types of hardware and real-time operating system(uC/OS-II, VxWorks) to perform HILS and flight tests. The key findings of this study are that MBD Technology enables the development of a reusable and an extensible software product and auto-code generation technology allows the production of a highly reliable flight control software under a compressed time schedule.

Design Verification of Cabin Pressurization System by Flight Test of T-50 Advanced Trainer (T-50 비행시험을 통한 조종실 여압시스템의 설계검증)

  • Seo, Dong-Yeon;Son, Won-Ik;O, Yeong-Jin;Kim, Ju-Hyeong;Park, Seong-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.70-75
    • /
    • 2006
  • The cabin pressurization system response should be consistent with the design limits such as the cabin pressure schedule, the pressure regulation tolerance, the maximum rate of pressure change during normal and abnormal operation and the maximum cabin air inflow rate change. In this paper, the results of pressure loss analysis and flight test for cabin pressurization system of T-50 advanced trainer are introduced. The pressure tolerance at unpressurized condition using calculated exit area of pressurization components through pressure loss analysis is predicted. Pressurization components of D company are selected and the predicted pressure tolerance is in good agreement with flight test results. Finally, T-50 pressurization system is verified by some flight tests of T-50 advanced trainer to comply with various pressurization design criteria of MIL-E-18927.

Investigation of Job Satisfaction and Hazardous Factors of Aircraft Cleaning Worker (항공기 청소 노동자의 작업 만족도 및 유해인자 조사)

  • Choi, Yeonhak;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.174-184
    • /
    • 2020
  • Objectives: The purpose of this study was to improve the working environment by identifying the work satisfaction of the cleaning workers of the aircraft and measuring and assessing the harmful factors of the cleaning process. Methods: We asked 23 cleaning companies for questionnaires and got 100 answers from 5 companies. The A-E Airline health manager has been contacted to establish a site survey schedule. The in-flight and lounge were measured using direct reading equipment. The harmful factor to be measured are noise, dust, temperature, volatile organic compound, total airborne bacteria, and total airborne bacteria. Results: Uncomfortable positions when replacing blanket, cleaning the table, and cleaning the floor have been identified as factor that reduce work satisfaction. Noise when replacing newspapers and cleaning toilets has been identified as a factor that lowers work satisfaction. Temperature and humidity were found to reduce work satisfaction during in-flight disinfection. Measurements of aircraft cabin and lounge with direct read equipment have shown that none of the items exceed the exposure criteria. Conclusions: As a result of measuring direct-reading equipment, no items exceeded the exposure criteria for each harmful factor. A clear survey of the working environment is required based on the results, and additional research is needed using personal sample measurement.

Study on Choice Attributes for Low-Cost Carriers Using IPA (저가항공사 선택속성 IPA분석 연구)

  • Park, Young Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.112-118
    • /
    • 2013
  • Air travel demand has recently been growing and establishment and operation of low-cost carriers have been increased. Against this backdrop, low-cost carriers need to figure out diversified customer demand for low-cost carriers and ways to maximize marketing efficiency before applying it to the field so that they can attain superiority to large carriers in increased intensified competition. Low-cost carriers need to be differentiated from other carriers for the purpose of improving profits. Toward this end, this study conducted analysis on importance and satisfaction with carrier choice using IPA with regard to low-cost carrier customers. In conclusion, the paper accurately examined advantages and disadvantages of low-cost carriers compared to general carriers based on results of IPA analysis and suggested managerial strategies to enhance competitiveness based on division into four parts including maintenance and enforcement (1st quadrant, Delay compensation, Booking rapidity, Check rapidity, Crew service, refund service, baggage service, punctuality, transit services, airlines images), concentrated improvement (2nd quadrant, price, Convenience of seat), passive administration (3rd quadrant, Boarding service, cabin cleanliness, flight schedule, whether local crew on board, meal service, in-flight entertainment service), and enhanced satisfaction (4th quadrant, duty-free service, Variety of routes), so that practical suggestions could be presented to employees working in the field.

Health Care Optimization by Maximizing the Air-Ambulance Operation Time

  • Melhim, Loai Kayed B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.357-361
    • /
    • 2022
  • Employing the available technologies and utilizing the advanced means to improve the level of health care provided to citizens in their various locations. Citizens have the right to get a proper health care services despite the location of their residency or the distance from the health care delivery centers, a goal that can be achieved by utilizing air ambulance systems. In such systems, aircrafts and their life spans are the essential component, the flight duration of the aircraft during its life span is determined by the maintenance schedule. This research, enhances the air ambulance systems by presenting a proposal that maximizes the aircraft flight duration during its life span. The enhancement will be reached by developing a set of algorithms that handles the aircraft maintenance problem. The objective of these algorithms is to minimize the maximum completion time of all maintenance tasks, thus increasing the aircraft operation time. Practical experiments performed to these algorithms showed the ability of these algorithms to achieve the desired goal. The developed algorithms will manage the maintenance scheduling problem to maximize the uptime of the air ambulance which can be achieved by maximizing the minimum life of spare parts. The developed algorithms showed good performance measures during experimental tests. The 3LSL algorithm showed a higher performance compared to other algorithms during all performed experiments.

Correlation Analysis between Delay and Turnaround Time at Jeju International Airport (제주국제공항의 지연과 Turnaround Time 간의 상관관계 분석)

  • Lee, Choongsub;Kim, Dongsin;Kim, Hyewook;Baik, Hojong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • The capacity of Jeju International Airport has reached its limit due to a surge in air traffic demand such as passengers and cargo and the continuous expansion of Low Cost Carriers (LCC). Despite COVID-19 that has began in November 2019, Jeju International Airport still has continuous demand in terms of passenger and cargo transportation. As a result, it is undeniable that the delay rate also unexpectedly increased as the air traffic volume at Jeju International Airport continued to increase. In this study, the correlation between Turnaround Time and delay rates of national airlines is analyzed based on past flight data at Jeju International Airport, and the cumulative delay time trend for sampled airlines is compared with Turnaround Time. Through this study, it is expected to contribute to securing aircraft operation efficiency and on-time by analyzing delays related to Turnaround Time at Jeju International Airport.