• Title/Summary/Keyword: Flight Safety System

Search Result 348, Processing Time 0.026 seconds

Obstacle Awareness and Collision Avoidance Radar Sensor System for Smart UAV

  • Kwag, Young K.;Hwang, Kwang Y.;Kang, Jung W.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.97-109
    • /
    • 2005
  • In this paper, the critical requirement for obstacle awareness and avoidance is assessed with the compliance of the equivalent level of safety regulation, and then the collision avoidance sensor system is presented with the key design parameters for the requirement of the smart unmanned aerial vehicle in low-altitude flight. Based on the assessment of various sensors, small-sized radar sensor is selected for the suitable candidate due to the real-time range and range-rate acquisition capability of the stationary and moving aircraft even under all-weather environments. Through the performance analysis for the system requirement, the conceptual design result of radar sensor model is proposed with the range detection probability and collision avoidance mode is established based on the time-to-collision, which is analyzed by collision scenario.

Development of a TOF LADAR Sensor and A Study on 3D Infomation Acquisition using Single Axis Driving Device (TOF기반의 2D LADAR 센서 개발 및 1축 구동장치를 활용한 3D 정보 획득에 대한 연구)

  • Kwon, JeongHoon;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.733-742
    • /
    • 2017
  • LADARs are used for important sensors in various applications, for example, terrain information sensors in self driving cars, safety sensors for factory automation, and 3D map constructions. This study develop important component technologies to improve the performance of a LADAR system under development in Korea. The component technologies include diode temperature regulation, reducing distance error in outdoor environment, and signal processing technique for better detection of distant objects. This paper explains the suggested component technologies and experimental results of the developed LADAR system. Also, the developed system is operated and tested an a single axis driving platform to acquire 3D information from 2D LADAR.

Development of Inspection System for NAVAID Using Drone (드론을 이용한 항행안전시설 점검체계 개발)

  • Lee, Young-Gil;Ju, Hyo-Geun;Kwon, Dal-Won;Park, Sung-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.110-115
    • /
    • 2018
  • This paper introduces Korea Airport Corporation's own research and development contents and plans for navigation aids check using drone which is actively research and developed mainly in advanced countries. The hardware, algorithm, operating program of the drone system, the drone flight trajectory setting, and real-time measurement results were analyzed and verified. By securing domestic technology for the latest technology utilizing drone, we plan to promote more thorough aviation safety and advanced technology in related field and commercialized it in domestic and overseas.

Spatial database architecture for organizing a unified information space for manned and unmanned aviation

  • Maksim Kalyagin;Yuri Bukharev
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.545-554
    • /
    • 2023
  • The widespread introduction of unmanned aircrafts has led to the understanding of the need to organize a common information space for manned and unmanned aircrafts, which is reflected in the Russian Unmanned aircraft system Traffic Management (RUTM) project. The present article deals with the issues of spatial information database (DB) organization, which is the core of RUTM and provides storage of various data types (spatial, aeronautical, topographical, meteorological, vector, etc.) required for flight safety management. Based on the analysis of functional capabilities and types of work which it needs to ensure, the architecture of spatial information DB, including the base of source information, base of display settings, base of vector objects, base of tile packages and also a number of special software packages was proposed. The issues of organization of these DB, types and formats of data and ways of their display are considered in detail. Based on the analysis it was concluded that the optimal construction of the spatial DB for RUTM system requires a combination of different model variants and ways of organizing data structures.

A Study on the Improvement of Force Fighting Phenomenon in the Redundant Hydraulic Servo Actuators (다중 유압 서보 작동기의 force fighting 현상 개선에 관한 연구)

  • Lee, Hee-Joong;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2013
  • In general, multiple hydraulic servo actuators are installed on one control surface of aero-dynamically highly loaded condition aircraft for redundancy management to satisfy flight control safety requirements. If motions of multiple actuators are not synchronized, control surface is deformed from its free stressed state. In result, force fight conditions are generated on each actuator due to restoration reaction force of deformed control surface. In addition, force fight is induced from severe initial rigging tolerance. Force fight condition of multiple actuators affects control accuracies and reduces operational life of actuators and control surface due to fatigue phenomenon. In this study, we designed controller using force feedback to reduce force fight of duplex servo actuation system.

Numerical Investigation of Large-capacity Wind Turbine Wake Impact on Drone system during Maintenance (수치해석 활용 대용량 풍력발전시스템 유지보수 시 타워 및 블레이드 후류에 따른 드론 블레이드 간섭 연구)

  • Jun-Young Lee;Hyun-Choi Jung;Jae-ho Jeong
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.100-108
    • /
    • 2023
  • The aim of this study is to develop guidelines for predicting interference between drones and wakes during non-destructive blade inspections in wind power systems. The wake generated by wind towers and blades can affect the stability of drone flights, necessitating the establishment of guidelines to ensure safe and efficient inspections. In order to predict the interference between drones and blades, environmental variables must be considered, including quantification of turbulence intensity in the wake generated by the tower and blades, as well as determining the appropriate distance between the drone and the tower/blades for flight stability. To achieve this, computational fluid dynamics (CFD) analysis was performed using cross-sectional geometries corresponding to the main wind turbine blade and tower span locations. Based on the CFD analysis results, a safe flight path for drones is proposed, which minimizes the risk of collision and interference with towers and blades during maintenance operations of wind power systems. Implementation of the proposed guidelines is expected to enhance the safety and efficiency of maintenance work.

Hazard Identification and Risk Assessment for the Use of Passenger Portable Electronic Devices (승객 휴대 전자기기 사용에 대한 위해요인 식별 및 리스크 평가)

  • Lim, In-Kyu;Kim, Mu-Geun;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.288-294
    • /
    • 2018
  • The entertainment system of the aircraft has changed its paradigm in the form of using passenger electronic devices instead of using a fixed monitor. This has simplified the on-board equipment while the risk of safety has increased with the electric charging of portable electronic devices. Unlike personal portable electronic devices that do not have a transmission function, the use of Wi-Fi enabled electronic devices(T-PED) is allowed and the battery is required to be charged in the cabin. In this study, we used the NASA Aviation Safety Reporting System to investigate the effects of changes in wireless environment and entertainment service. Based on this, we analyzed the risks of personal electronic devices by sharing event occurrence cases caused by in-flight electronic equipment or passenger portable electronic devices(especially smart phones) from the viewpoint of aircraft safety management. This analysis includes identification of potential hazards and risk assessment, and finally the strategies for risk mitigation for safe use of portable electronic devices are suggested.

Design Improvement for Abnormal Display of Fuel Indicator Mounted on the Korean Utility Helicopter (한국형 기동헬기 연료량 지시계 이상시현 현상 설계개선)

  • Kim, Joung-Hun;Kim, Chang-Young;Chang, Joong-Jin;Chang, In-Ki;Jun, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.707-712
    • /
    • 2014
  • Aircraft fuel indicator is a device to indicate the amount of fuel remained during flight, where accurate and consistent operation of the indicator should be maintained. Previously the Korean Utility Helicopter fuel indicator sporadically displayed abnormal sign by "8888" during flight, jeopardizing flight safety. Inappropriate EMI/EMC performance was detected during trouble shooting process. The cause of the abnormal display was found to be resulted from unstable power induced by electro-magnetic disturbance and CAN communication error. The aircraft fuel indicator design was improved and the design compatibility was verified to avoid abnormal display.

A Study on the Practical Use of Human Alertness for Flight Safety Program (비행안전 프로그램으로서의 생체 활성도 활용방안 연구)

  • Lee, Dal-Ho;Choe, Seung-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.13-22
    • /
    • 1998
  • Aircraft and the three-dimensional environment in which they operate are not user-friendly for human beings. As a result, maintaining the proficiencies necessary to safely and efficiently fly an airplane are difficult, and costly. The physiological and emotional status of the human element remains crucial in maintaining safe performance by all crew members. In the study of Hagiwara et al.(1993). they called the physiological and emotional status of the human element into the human alertness or physiological activity and stress, fatigue, circadian rhythm, alcohol. smoking, and self-medication are known the major factors that deteriorate the human alertness. Accordingly. this paper deals with the quantitative and objective performance test based on tracking error and reaction time by means of the new computer test program into which the perception-motion system of human beings is applied. Throughout this experiment using performance test, the results suggest that performance capability in state of sleep deprivation 2 hours and alcoholic 0.05~0.06% in blood were more impaired than one in a normal state, and they further showed statistically significant differences between them, which were influenced by impairment factors of body regulation and pilot's grade. We also obtained the prediction value and the 95% confidence interval of tracking error and reaction time at the normal state for the purpose of distinguishing performance capability between the normal state and the abnormal state. And it is expected that the evaluation of human alertness using performance test will be applied to the quantitative assessment of an each pilot's realistic consciousness/attention, and will lead a flight commander to the accurate decision of mission approval prior to a flight.

  • PDF

A Proposal for Drone Entity Identification and Secure Information Provision Technology Using Quantum Entropy Chip-Based Cryptographic Module in WLAN Environment (무선랜 환경에서 양자 엔트로피 칩 기반 암호모듈을 적용한 드론 피아식별과 안전한 정보 제공 기술 제안)

  • Jung, Seowoo;Yun, Seunghwan;Yi, Okyeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.891-898
    • /
    • 2022
  • Along with global interest, drones are expanding the base of utilization such as transportation of goods, forest protection, and safety management, and cluster flights are being applied in various fields such as military operations and environmental monitoring. Currently, specialized networks such as e-UM 5G for services in specific industries are being established in Korea. In this regard, drone systems are also moving to establish specialized networks to provide services that are fused with AI and autonomous flight. As drones converge with various services, various security threats in various environments are also subordinated, and in response, requirements and guidelines for drone security are being prepared in Korea. In this paper, we propose a technology method for peer identification and safe information provision between cluster flight drones by utilizing a cryptographic module equipped with wireless LAN and quantum entropy-based random number generator in a cluster flight system and a mobile communication network such as e-UM 5G.