• Title/Summary/Keyword: Flight Safety

Search Result 655, Processing Time 0.025 seconds

A Study on the Reduction of Cosmic Radiation Exposure by Flight Crew (항공승무원의 우주방사선 피폭 저감에 관한 연구)

  • Ahn, Hee-Bok;Kim, Kyu-Wang;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The purpose of this study is to analyze the radiation dose data of the space crew of the flight crew and to present a plan for the health management of the flight crew on the basis of the analysis. The analysis show that the average exposure dose of the flight attendants continued to rise, and the exposure dose of the flight attendants was five(5) times higher than that of the radiation workers. As a way to reduce the effects of cosmic radiation, this paper suggests appropriate personnel allocation by model, balanced allocation of high and low latitude routes by crew according to the aircraft type, and a low altitude flight plan for high latitude flight. This study will help aviation crew members understand cosmic radiation and trust in the company's policies. In the future, it will be necessary to enhance the flight safety of the crew by deriving meaningful results by analyzing data related to cosmic radiation of various routes.

Comparison Study on Take-Off and Landing Flight Test Using Ground Observation and DGPS Method (지상관측법 및 DGPS 기법을 활용한 이/착륙 성능 비행시험 비교)

  • Lee, Sang-Jong;Chang, Jae-Won;Jeon, Byoung-Ho;Seong, Kiej-Jeong;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.931-938
    • /
    • 2009
  • The flight test is last means of compliance to satisfy airworthiness standards and important to evaluate the performance and safety of the developed aircraft. The flight test technologies are obtained from great numbers of experiences and know-hows and protected. In addition, flight test should be conducted efficiently since its various test conditions and items. Therefore, it is requisite to secure efficient flight test methods. This paper discusses the flight test methods for take-off and landing performance and two kinds of techniques are proposed. By performing real flight tests, they are compared with each other and analyzed through the flight analysis.

Development and Evaluation of the Korean Army's Ergonomic Flight Jacket (인간공학적 육군 비행재킷의 개발 및 평가)

  • Choi, Hee Eun;Choi, Kueng-mi
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.118-128
    • /
    • 2021
  • This study used a preliminary survey to help develop an ergonomic flight jacket that is suitable for the working environment and mission performance. The results are as follows. The ergonomic sleeve pattern was designed with a forward 165° incline that considers a shoulder joint direction suitable for the motion; in addition, a closely design opening provided warmth and safety from fire. As a result of the dimensional suitability, pilots evaluated that sleeve length and total length of the developed flight jacket were a little long (p<.01), while flight engineers and crew evaluated that those of the developed flight jacket were appropriate (p<.01). Pilots evaluated that chest circumference and waist circumference were large (p<.05), while flight engineers and crews evaluated that those of the developed flight jacket were appropriate. The evaluation of the motion suitability indicated that pilots, flight engineers and crew found the developed flight jacket more comfortable than the current flight jacket (p<.05, p<.01, p<.001). The evaluation of the usability of pockets and penholders indicated that pilots, flight engineers and crew found the developed jacket easier to use (p<.01). The flight engineers and crew evaluated that the appearance of the developed flight jacket was better than the current flight jacket (p<.05). The results of this study show that the difference of environment and mission performance has a significant influence on evaluation; therefore, it is necessary to develop separate military uniforms that included a winter flight jacket to reflect the needs of each group.

Model-Based Design and Enhancement of Operational Procedure for Guided Missile Flight Test System (유도무기 비행시험 시스템을 위한 모델 기반 운용절차의 설계 및 개선)

  • Park, Woong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.479-488
    • /
    • 2019
  • The flight test operational procedure artifact includes mission planning, execution methods, and safety measures for each step of test progress. As the development of guided missiles has become more advanced and strategic, flight test has become increasingly complex and broadened. Therefore, increased reliability of the flight test operation procedures was required to ensure test safety. Particularly, the design of the flight test operational procedures required verification through M&S to predict and prepare for the uncertainty in a new test. The relevant studies have published the optimal framework development for flight tests and the model-based improvements of flight test processes, but they lacked the specificity to be applied directly to the flight test operational procedures. In addition, the flight test operational procedures, which consist of document bases, have caused problems such as limitations of analysis capabilities, insensitive expressions, and lack of scalability for the behavior and performance analysis of test resources. To improve these problems, this paper proposes how to design operational procedure of guided missile flight test system by applying MBSE(Model-based Systems Engineering). This research has improved reliability by increasing the ability to analyze the behavior and performance of test resources, and increased efficiency with the scalability applicable to multiple flight tests. That can be also used continuously for the guided missile flight tests that will be developed in the future.

A UAV Flight Control Algorithm for Improving Flight Safety (무인항공기 비행제어컴퓨터 알고리즘 개발을 통한 비행안전성 향상)

  • Park, Suncheol;Jung, Sungrok;Chung, Myungjin
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.559-565
    • /
    • 2017
  • A UAV(unmanned aerial vehicle) requires higher reliability for external effects such as electromagnetic interference because a UAV is operated by pre-designed programs that are not under human control. The design of a small UAV with a complete resistance against the external effects, however, is difficult because of its weight and size limitation. In this circumstance, a conventional small UAV dropped to the ground when an external effect caused the rebooting of the flight-control computer(FCC); therefore, this paper presents a novel algorithm for the improvement of the flight safety of a small UAV. The proposed algorithm consists of three steps. The first step comprises the calibration of the navigation equipment and validation of the calibrated data. The second step is the storage of the calibration data from the UAV take-off. The third step is the restoration of the calibration data when the UAV is in flight and FCC has been rebooted. The experiment results show that the flight-control system can be safely operated upon the rebooting of the FCC.

Analysis and Flight Test of XKO-1 Store Separation (저속통제기 외부장착물 분리해석 및 비행시험)

  • Lee, Seung-Soo;Kim, Sang-Jin;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.24-29
    • /
    • 2004
  • In this paper, we summarize the results of free drop wind tunnel test, separation analysis and flight test in order to verify the safety during the separations of an external fuel tank and the LAU-131 rocket launcher from XKO-l. The wind tunnel test was conducted to show the safety in free drop of the stores and to gather the trajectory data for fine tune of MSAP(Multi-body Separation Analysis Program). The enhanced MSAP was then used to predict the trajectories of the stores with and without the ejector forces. A correlation of MSAP results for free drop case was also made to show the safety of jettison with the free drop type bomb rack. Moreover, the flight test was conducted. and its results were compared to analysis results. Finally, the safe jettison boundary was determined from the flight test.

A Study on the Characteristics of Lightning Detection over the Naro Space Center (나로우주센터 상공의 낙뢰 발생 특성 연구)

  • Kim, Hong-Il;Choi, Eun-Ho;Suh, Sung-Ho;Seo, Seong-Gyu
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.543-553
    • /
    • 2022
  • The latest aerospace technology is important for the stable flight of a launch vehicle, but weather conditions on the day of launch are also one of the essential factors for successful launch campaign. If a launch vehicle is directly struck while preparing to take off from the launch pad on the day of launch or the electronic device are damaged by induced current during flight of the launch vehicle, this means launch failure and can lead to enormous national loss. Therefore, for a successful launch campaign, it is necessary to analyze the lightning detection characteristics of the Naro Space Center. In this study, the seasonal factors of the lightning that occurred over the Naro Space Center from 2003 to 2017, the influence of the polarity, and the correlation with the lightning intensity was confirmed. As a result, there was a high probability of intensive occurrence of multiple lightning strikes in summer, and a high proportion of positive (+) lightning strikes in winter. Lastly, in the distribution of the number of lightning strikes, an average of 2.0 to 2.5 negative (-) lightning strikes occurs in the coastal regions of the South and West Seas when one flash happens.

A Study on Position Estimation of Aircraft in Flight Data Processor (비행자료처리시스템에서의 항공기 위치 추정에 관한 연구)

  • Lee, Seoung-Hyeon;Park, Hyo-Dal;Han, Jong-Wok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.871-872
    • /
    • 2009
  • FDP(Flight Data Processor) is processing of flight data for safety air traffic management. FDPs takes core function in aviation safety. Position estimation of aircraft is a key feature of the FDPs. In this paper, the requirements for position estimation of aircraft was defined.

  • PDF

Fusion Filter for the Trajectory and Instantaneous Impact Point Estimation of a Satellite Launch Vehicle (위성발사체 궤도 및 순간낙하점 추정을 위한 융합필터)

  • Ryu, Seong-Sook;Kim, Jeong-Rae;Song, Yong-Kyu;Ko, Jeong-Hwan;Sim, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.295-303
    • /
    • 2008
  • Malfunction of satellite launch vehicles with high speed and long range can be a major concern for operations. Flight safety system that monitor the trajectory and identify any failure of the launch vehicles. Tracking filters for the flight safety systems are different from common tracking filters since filter reliability is more emphasized than accuracy. Reliable estimation of instantaneous impact points requires reliable velocity estimates as well as reliable position estimates. A fusion filter for a flight safety system was developed with the tracking sensor models for the Korea Satellite Launch Vehicle I. The fusion filter performances were evaluated by analyzing the trajectory and instantaneous impact point estimates.

  • PDF

A Study on the Prediction Technique of Impact Dispersion Area for Flight Safety Analysis (비행안전분석을 위한 낙하분산영역 예측 기법에 대한 연구)

  • Choi, Kyu-Sung;Sim, Hyung-Seok;Ko, Jeong-Hwan;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • Flight safety analyses concerned with Launch Vehicle are performed to measure the risk to the people, ship and aircraft using impact point and impact dispersion area of debris generated by on-trajectory failures and malfunction turns. Predictions of impact point and impact dispersion area are essential for launch vehicle's flight safety analysis. Usually, impact dispersion area can be estimated in using Monte-Carlo simulation. However, Monte-Carlo method requires more several hundreds of iterative calculations which requires quite some time to produce impact dispersion area. Herein, we check the possibility of applying JU(Julier Uhlmann) transformation and Taguchi method instead of Monte-Carlo method and we propose a best method in terms of compuational time to produce impact dispersion area by comparing the results of the three methods.