• Title/Summary/Keyword: Flight Procedure Design

Search Result 83, Processing Time 0.031 seconds

A Sizing Method for Solar Power Long Endurance UAVs (태양에너지 기반 장기체공 무인기 주요 치수 결정 방법론)

  • Lee, Ju-Ho;Lee, Chang-Gwan;Lim, Se-Sil;Kim, Keum-Seong;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.758-766
    • /
    • 2010
  • The design procedure of Solar Power UAVs is complicated because the configuration and required power for flight must be considered simultaneously as the supplied power is influenced by the wing area. In order to minimize trial and error for the Solar Power UAVs design, a systematic sizing method is proposed which can be used to determine whether a Solar Power UAV is feasible for a given mission, and to derive preliminary dimensional specification of it. The sizing procedure begins with initially assumed wing area because the power, lift, and drag of the wing are directly proportional to it. The assumed wing area and mission requirements are then used to determine step by step the airfoil specifications including lift coefficient and drag coefficient, weight, required power, and wing area. This procedure is iterated for each newly assumed wing area until the error between the assumed wing area and calculated wing area becomes significantly small enough. This sizing methodology was applied to previously developed Solar Power UAVs for validation purposes, resulting in good agreement. The methodology was also applied to determine the dimensions and specifications of the Solar Power High-Altitude Long-Endurance UAV.

Design and Fabrication of Coaxial Rotorcraft-typed Micro Air Vehicle for Indoor Surveillance and Reconnaissance (실내감시정찰용 동축반전 헬리콥터형 미세비행체 설계 및 제작)

  • Byun, Young-Seop;Shin, Dong-Hwan;An, Jin-Ung;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1388-1396
    • /
    • 2011
  • This paper is focused on the procedure of the development of a micro air vehicle which has vertical take-off and landing capability for indoor reconnaissance mission. Trade studies on mission feasibility led to the proposal of a coaxial rotorcraft configuration as the platform. The survey to provide a guide for preliminary design were conducted based on commercial off-the-shelf platform, and the rotor performance was estimated by the simple momentum theory. To determine the initial size of the micro air vehicle, the modified conventional fuel balance method was applied to adopt for electric powered vehicle, and the sizing problem was optimized with the sequential quadratic programming method using MATLAB. The designed rotor blades were fabricated with high strength carbon composite material and integrated with the platform. The developed coaxial rotorcraft micro air vehicle shows stable handling quality with manual flight test in indoor situation.

Robust Control Design for Handling Quality Improvement of Iced Full-scale Helicopter (결빙된 전기체 헬리콥터의 비행성 향상을 위한 강인 제어 설계)

  • Ju, Jong-In;Kim, Yoonsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.103-110
    • /
    • 2022
  • Degradation of handling qualities(HQs) due to bad weather or mechanical failure can pose a fatal risk to pilots unfamiliar with such situation. In particular, icing is an important issue to consider as it is a frequent cause of accidents. Most of the previous research works focuses on aerodynamic performance changes due to icing and the corresponding icing modeling or methods to prevent icing, whereas the present work attempts to actively compensate for HQ degradation due to icing on a full-scale helicopter through flight control law design. To this end, the present work first demonstrates HQ degradation due to icing using CONDUIT software, and subsequently presents a robust control design via the RS-LQR(Robust Servomechanism Linear Quadratic Regulation) procedure to compensate for the HQ degradation. Simulation results show that the proposed robust control maintains Level 1 HQ in the presence of icing.

Implementation of Airborne Multi-Function Radar Including Attitude Maneuvering (자세 기동을 고려한 항공기 탑재 다기능 레이다 통합 시뮬레이터 구현)

  • Ko, Jae-Youl;Park, Soon-Seo;Choi, Han-Lim;Ahn, Jae-Myung;Lee, Sung-Won;Lee, Dong-Hui;Yoon, Jung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2017
  • In this paper, a simulation test bed is presented which operates to provide full-scale simulation of airborne multi-function phased array radars. This simulation test bed provides a capability to evaluate the target tracking performance. To realize aircraft operation scenario, we developed 6DOF aircraft dynamics model which can generate trajectories and attitude of an aircraft. This procedure includes steady state flight trim search, autopilot design, and aircraft guidance command design. Also, the radar-environment integrated simulator includes target detection/measurement model and tracking filter. Developed simulator is validated by creating an air-to-air scenario.

A design of UAV Simulation model for waypoint optimization method (웨이포인트 최적화 방법에 대한 UAV 시물레이션 모델의 디자인)

  • Niyonsaba, Eric;Jang, JongWook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.239-242
    • /
    • 2016
  • In recent years, Unmanned Aerial Vehicles (UAV) have been developed for both military and civilian activities in regions where the presence of onboard human pilots is risky or not necessary. However, UAV require a high demand of power to achieve its missions such as taking images/videos in a certain area or surveillance activities. Therefore, this situation triggers the need of techniques to reduce power consumption for UAV to complete its mission safely. One of the methods is to use a waypoint optimization procedure which deals with a pre-specified set of waypoints to find a minimum route to fly through those waypoints in order to reduce power consumption. In this paper, due to the UAV's multidisciplinary which makes it impossible to be represented as an analytical model, we design a simulation model of UAV using MATLAB Simulink and AeroSim Blockset, an analysis package in aerospace industry. The simulation model is then coupled with optimization algorithms along with a set of waypoints (flight path) in order to measure at which percentage power consumption can be minimized for UAV.

  • PDF

Verification Methods for Vulnerabilities of Airborne Object-Oriented Software (항공용 객체지향 소프트웨어에 대한 취약점 검증 방안)

  • Jang, Jeong-hoon;Kim, Sung-su;Lee, Ji-hyun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.13-24
    • /
    • 2022
  • As the scale of airborne system software increases, the use of OOT (Object-Oriented Technology) is increasing for functional expansion, efficient development, and code reuse, but the verification method for airborne object-oriented software is conducted from the perspective of the existing procedure-oriented program. The purpose of this paper was to analyze the characteristics of OOT and the vulnerabilities derived from the functional characteristics of OOT, and present a verification method applicable to each software development process (Design, Coding and Testing) to ensure the functional safety integrity of aviation software to which OOT is applied. Additionally, we analyzed the meaning of the static analysis results among the step-by-step verification measures proposed by applying LDRA, a static analysis automation tool, to PX4, an open source used to implement flight control software.

Study on Local Path Control Method based on Beam Modeling of Obstacle Avoidance Sonar (장애물회피소나 빔 모델링 기반의 국부경로제어 기법 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.218-224
    • /
    • 2012
  • Recently, as the needs of developing the micro autonomous underwater vehicle (AUV) are increasing, the acquisition of the elementary technology is urgent. While they mostly utilizes information of the forward looking sonar (FLS) in conventional studies of the local path control as an elementary technology, it is desirable to use the obstacle avoidance sonar (OAS) because the size of the FLS is not suitable for the micro AUV. In brief, the local path control system based on the OAS for the micro AUV operates with the following problems: the OAS offers low bearing resolution and local range information, it requires the system that has reduced power consumption to extend the mission execution time, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent local path control algorithm based on the beam modeling of OAS with the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance and analyze the characteristic of the proposed algorithm, the course control of the underwater flight vehicle (UFV) is performed in the horizontal plane. Simulation results show that the feasibility of real application and the necessity of additional work in the proposed algorithm.

A study on in-flight acoustic load reduction in launch vehicle fairing by FE-SEA hybrid method (FE-SEA 하이브리드 기법을 이용한 비행 중 발사체 페어링 내부 음향하중 저감에 관한 연구)

  • Choi, Injeong;Park, Seoryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.351-363
    • /
    • 2020
  • Launch vehicles are subject to airborne acoustic loads during atmospheric flight and these effects become pronounced especially in transonic region. As the vibration due to the acoustic loads can cause malfunction of payloads, it is essential to predict and reduce the acoustic loads. In this study, a complete process has been developed for predicting airborne vibro-acoustic environment inside the payload pairing and subsequent noise reduction procedure employing acoustic blankets and Helmholtz resonators. Acoustic loads were predicted by Reynolds-Averaged Navier-Stokes (RANS) analysis and a semi-empirical model for pressure fluctuation inside turbulent boundary layer. Coupled vibro-acoustic analysis was performed using VA One SEA's Finite Element Statistical Energy Analysis (FE-SEA) hybrid module and ANSYS APDL. The process has been applied to a hammerhead launch vehicle to evaluate the effect of acoustic load reduction and accordingly to verify the effectiveness of the process. The presently developed process enables to obtain quick analysis result with reasonable accuracy and thus is expected to be useful in the initial design phase of a launch vehicle.

A Research on Knowledge Sharing among Air Transportation Professionals (이직종간 지식공유 활성화 방안에 대한 연구 : 항공운항 분야를 중심으로)

  • Kim, Wan-Hyun;Park, Sang-Bum
    • The Journal of Industrial Distribution & Business
    • /
    • v.8 no.6
    • /
    • pp.61-73
    • /
    • 2017
  • Purpose - Aviation control, navigation, and aircraft control in the air transportation area are very specialized. Each part is in progress for safety, efficiency, automation, and further. On the other hand co-work among each part including knowledge sharing has been inattentive for many reasons. The purpose of this research is to show how practicians and professionals in the air transportation area perceive the issue of knowledge sharing and to recall the necessity of knowledge sharing in the area. And we try to find ways to activate the knowledge sharing in the area. Research design, data, methodology - For the research, we inquired into whether practicians and professionals think knowledge sharing can effect safe aviation positively or not and what steps are necessary to activate knowledge sharing in the area. We adopted survey method using questionnaires for current practicians and interview for specialists. The survey and interview results were analyzed using regression analysis and AHP method. The interview for specialists and analyzing the results using AHP was to investigate what are the precedence factors to activate the knowledge sharing. Results - First, practicians perceive that knowledge sharing will affect aviation safe positively. Second objective knowledges such as, tower air traffic control procedure of aviation control area, flight principle and structure of aircraft control area, instrument landing system of navigation area, for knowledge sharing of each area were identified. Also the precedence factors such as, knowledge absorbability of personal factor, personal expectation of result of expectation factor, leadership of management of Structure factor, method of knowledge spread of application factor for knowledge sharing were found. Conclusions - Knowledge sharing for practicians and professionals in the aviation area is very important especially from the perspective of safety. However, for various many reasons including the environment of each special area that focusing on their own area, knowledge sharing has not been emphasized. We found that practicians in the area feel that knowledge sharing is necessary and helpful. For it, each practician's active participation is the most important and many ways such as chatting room to share knowledge are to be developed. And the organization culture should be changed to encourage knowledge sharing.

Real 3-D Shape Restoration using Lookup Table (룩업 테이블을 이용한 물체의 3-D 형상복원)

  • Kim, Kuk-Se;Lee, Jeong-Gi;Song, Gi-Beom;Kim, Choong-Won;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1096-1101
    • /
    • 2004
  • The 3-D shape use to effect of movie, animation, industrial design, medical treatment service, education, engineering etc.... But it's not easy to make 3-D shape from the information of 2-D image. There are two methods in restoring 3-D video image through 2-D image; First the method of using a laser; Secondly the method of acquiring 3-D image through stereo vision. Instead of doing two methods with many difficulties, I figure out the method of simple 3-D image in this research paper. We present here a simple and efficient method, called direct calibration, which doesn't require any equations at all. The direct calibration procedure builds a lookup table(LUT) linking image and 3-D coordinates by a real 3-D triangulation system. The LUT is built by measuring the image coordinates of a grid of known 3-D points, and recording both image and world coordinates for each point; the depth values of all other visible points are obtained by interpolation.