• Title/Summary/Keyword: Flight Performance

Search Result 1,371, Processing Time 0.026 seconds

Flight Environment Simulation Test for Reliability Improvement of Precise Guided Missile (유도무기의 신뢰성 향상을 위한 비행환경 모사시험 방안 연구)

  • Choi, Seung Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.781-787
    • /
    • 2016
  • We introduce FEST (Flight Environment Simulation Test) procedures for precise guided missiles to reliably improve systems. Flight vibration specification was established based on power spectral density curves calculated from flight test data of a high speed precise guided missile. A FEST pre-profile was developed according to flight vibration specification and delivered to a precise guided missile assembly. Vibration responses were measured by installing accelerometers on electronic components vulnerable to dynamic forces. The FEST profile was adjusted by comparing the vibration responses and the flight vibration specification. Subsequently, the FEST profile was repeatedly modified through trial and error, because the responses were similar to the flight environment. The modified FEST profile enabled performance testing of assembled precise guided missiles under simulated flight conditions on the ground, where unexpected errors could be corrected before the flight tests, leading to cost and risk reduction in the development of the precise guided missile system.

Comparing Energy Consumption following Flight Pattern for Quadrotor

  • Jee, Sunho;Cho, Hyunchan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.747-753
    • /
    • 2018
  • Currently, many companies have succeeded in logistics delivery experiments utilizing drone and report it. When a drone is used commercially, long-term flight is an important performance that a drone should have. However, unlike vehicles operated on the ground, drone is a vehicle that continues to consume energy when maintaining the current altitude or moving to the destination. Therefore, the drones can fly for a long time as the capacity of the battery is large, but the batteries with large capacity are restricted by heavy weight and it acts as a limiting factor in a commercial use. To address this issue, we attempt to compare how far we can fly than forward flight based on the flight pattern with the same energy consumption condition. In this paper, the comparison of energy consumption was performed in three flight pattern, forward flight without altitude change and forward flight with altitude change, by computer simulation and it shows the increasing of flight distances when the quadrotor fly with altitude change from high altitude to low altitude.

Design Method of 2D Scramjet Inlet Considering Wide Flight Range (넓은 비행영역을 고려한 2D 스크램제트 흡입구 설계 방법)

  • Lee, Jaewon;Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.16-27
    • /
    • 2020
  • For the operation of the scramjet engine in the wide flight range, the design of the inlet must show stable performance in various flight conditions. In this study, the design methods of a 2D fixed inlet for stable performance in wide flight ranges of Mach number 4 to 6 and angle -6° to 6°, is performed. After proposing the design method and design focus, performance prediction and analysis were performed by various initial compression angles and design Mach numbers, which are essential design factors in total pressure recovery and inlet capture area ratio in the wide flight range. Based on the analysis results, we present the selection criteria for the two main design elements to represent stable performance in the wide flight range.

Drivers of Corporate Sustainable Performance across the Flight Catering Supply Chain

  • Joonhyeong Joseph KIM;Anita EVES
    • Journal of Distribution Science
    • /
    • v.22 no.5
    • /
    • pp.105-115
    • /
    • 2024
  • Purpose: The purpose of the current study is to highlight the drivers of corporate environmentally and socially sustainable performance among different players including airlines, caterers, suppliers and logistics companies in the flight catering supply chain. Research design, data and methodology: Based on a qualitative research approach this study employed in-depth semi-structured interviews exploring the drivers of corporate sustainable performance with management from major in-flight catering stakeholders (n=23) from the perspective of constructivism. Using the snowball sampling approach, interviewees were carefully chosen to represent a diverse range of supply chain contexts (airlines, catering, non-food suppliers, and logistics companies). Results: By focusing on the complex context of multiple supply chain partners, the study identified a range of complex relationships between the drivers of sustainable performance in the supply chain: firm-led drivers, factors influencing firm-led drivers, partial influencers, and additional factor, cost. Conclusions: This study emphasizes that some drivers do not play an absolute role and has highlighted that there is a need for companies to change the attitude, that is to pay more than 'lip service' to improving sustainable performance. This study develops a theoretical framework of the drivers of corporate sustainable performance, along with its practical industry implications.

A Study on a Intelligence Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 지능형 심도 제어에 관한 연구)

  • 김현식;황수복;신용구;최중락
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.30-41
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, It needs a robust performance which can get over the nonlinear characteristics due to hull shape. Second, It needs an accurate performance which has the small overshoot phenomenon and steady state error to avoid colliding with ground surface and obstacles. Third, It needs a continuous control input to reduce the acoustic noise. Finally, It needs an effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose a Intelligence depth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed control scheme has robust and accurate performance by continuous control input and has no speed dependency problem.

  • PDF

A Performance Analysis of a Glidepath Tracking Algorithm for Autolanding of a UAV (무인항공기 자동착륙을 위한 활강궤적 추종 알고리듬 성능분석)

  • Choi, Young-Hyun;Koo, Hueon-Joon;Kim, Jong-Sung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.262-269
    • /
    • 2005
  • Automatic landing of UAVs receives increasing interest these days, with increasing number of the developed UAV systems. In this paper, a glidepath tracking algorithm of the subscale UAV was proposed and the performance was analyzed. Flight data analysis shows that the existing autolanding flight control algorithm has a classical type glidepath control. This paper presents an alternative glidepath tracking strategy based on embedded flight control law. The performance of the proposed strategy was investigated through the TDP(Touch Down Point) error analysis with regard to various flight environment: steady headwind, atmospheric disturbance, communication transfer delay. It was verified that the proposed glidepath tracking strategy can be successfully applied to the practical autolanding of UAV systems.

Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator (퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.

Airspeed, Altitude Calibration and Climb Performance of Twin Bee by Flight Test (쌍발 복합재 비행기의 속도, 고도 보정 및 상승성능에 관한 연구)

  • Hwang, Myoung-Shin;Park, Youn-Jin;Lee, Jung-Mo;Kim, Chil-Young;Eun, Hee-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.5 no.1
    • /
    • pp.7-16
    • /
    • 1997
  • Airspeed and altimeter calibration of Twin Bee was conducted by the flight test. We have adopted system to system method. Flight test data is corrected for instrumented error and position error, and the resultin data was satisfied. Climb Performance flight test also was conducted. But we could not have all data because of limited flight time. The resulted data was satisfied compare with calculated data.

  • PDF

A Study on Determination for Mixture Lever's Position by Flight Test (비행시험을 통한 엔진의 혼합기레버 위치 설정에 관한 연구)

  • Kim, Jin-Gon;Kim, Chil-Yeong;Lee, Jeong-Mo;Lee, Jeong-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.3 no.1
    • /
    • pp.37-47
    • /
    • 1995
  • It is very important to determine the performance and operating envelope of engine for aircraft's flight. The basic performance is provided by manufacturer, but installed engine's operating envelop is only determined by flight test. First, this study was measured cylinder head temperature(CHT), exhaust gas temperature(EGT) and oil temperature. At pre-determined altitude and power rate, these temperatures were measured by change of mixture ratio and mixture ratio condition for economic operation and max. power were found. And secondly, with the measured temperatures, possible positions of mixture lever were determined by flight test for stable flight Chang-91 and Lycoming IO-360-A series four cylinders engine with 200 hp was used for this study.

  • PDF