• Title/Summary/Keyword: Flight Performance

Search Result 1,371, Processing Time 0.022 seconds

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

Study on climb performance flight test techniques for small airplane (소형단발비행기 상승성능 확인을 위한 비행시험방안 연구)

  • Kim, PhilSoo
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.39-44
    • /
    • 2013
  • On this study, climb performance related airworthiness requirements for small airplane on KAS Part 23 and flight test techniques for climb performance (Sawtooth climb) are introduced. Also, applicable procedures, test conditions and required test parameters of sawtooth climb flight test techniques are reviewed.

Analysis between Flight Training and Flight Simulator Trainingin Helicopter Flight Training Course (헬리콥터 비행교육 과정에서 비행훈련과 모의비행훈련의 상관관계 분석)

  • Na, Yu-chan;Cho, Young-jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.7-13
    • /
    • 2022
  • As the demand for simulated flight training and interest in new technology training increase, this study analyzed the performance of flight simulator training and actual flight training subjects to confirm efficient flight simulator training curriculum. Summarizing the results of the study, found that flight simulator training had a significant positive effect on the actual flight training performance and in particular had a relatively large effect on the air maneuver, traffic pattern, cross country flight subjects. As a result of analyzing theoretical major classes that affect flight simulator training to verify the correlation, found that principle of air navigation, air traffic service, and helicopter flight theory were affected in order. The significance of this study was to identify the curriculum and ground lesson that should be focused on effectively performing flight simulator training in the helicopter private pilot course.

Development of Flight Control Laws for the T-50 Advanced Supersonic Jet Trainer

  • Kim, Chong-Sup;Hur, Gi-Bong;Hwang, Byung-Moon;Cho, In-Je;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.32-45
    • /
    • 2007
  • The T-50 advanced supersonic jet trainer employs the Relaxed Static Stability (RSS) concept to improve the aerodynamic performance while the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 flight control laws employ a proportional-plus-integral type controller based on a dynamic inversion method in longitudinal axis and a proportional type controller based on a blended roll system with simple roll rate feedback and beta-betadot feedback system. These control laws are verified by flight tests with various maneuver set flight envelopes and the control laws are updated to resolve flight test issues. This paper describes several concepts of flight control laws used in T-50 to resolve those flight test issues. Control laws for solving the roll-off problem during pitch maneuver in asymmetric loading configurations, improving the departure resistance in negative angle of attack conditions and enhancing the fine tracking performance in air-to-air tracking maneuvers are described with flight test data.

Recent trends in advanced flight control

  • Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.1-24
    • /
    • 1996
  • The development of future aircraft that involves the expanded flight envelop will place increased performance requirements on the design of the flight control system. Maneuvering areas are expanding into flight envelopes characterized by significantly larger levels of modeling uncertainty than encountered in present flight control designs. Conventional flight control techniques that ignore the effects of large parameter variations, modeling uncertainties and nonlinearities, will likely produce designs with poor performance and robustness. Recent advances in modern control theories called advanced control theories, most notably the H$\_$.inf./ synthesis technique, adaptive control and neural network application, offer the promise of a design technique that can produce both high performance and robust controllers for next generation aircraft. This special lecture will survey the recent development in advanced flight control and review the possible application of advanced control theories.

  • PDF

Comparison Study on Take-Off and Landing Flight Test Using Ground Observation and DGPS Method (지상관측법 및 DGPS 기법을 활용한 이/착륙 성능 비행시험 비교)

  • Lee, Sang-Jong;Chang, Jae-Won;Jeon, Byoung-Ho;Seong, Kiej-Jeong;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.931-938
    • /
    • 2009
  • The flight test is last means of compliance to satisfy airworthiness standards and important to evaluate the performance and safety of the developed aircraft. The flight test technologies are obtained from great numbers of experiences and know-hows and protected. In addition, flight test should be conducted efficiently since its various test conditions and items. Therefore, it is requisite to secure efficient flight test methods. This paper discusses the flight test methods for take-off and landing performance and two kinds of techniques are proposed. By performing real flight tests, they are compared with each other and analyzed through the flight analysis.

Analysis of Flight Performance Reserve for Upper Stage of Satellite Launch Vehicles (위성발사체 상단의 비행성능여유 분석)

  • Song, Eun-Jung;Choi, Jiyoung;Cho, Sang-bum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.386-392
    • /
    • 2017
  • This paper considers the analysis of the flight performance reserve, which is required propellant to compensate various launch vehicle performance deviations, to inject the payload of a 3-staged launch vehicle to a circular sun synchronous orbit at a height of 700 km. The various error sources, which affect the orbit injection accuracy, and their uncertainty are defined first. Then the sensitivity analysis, which has the advantage that each error source effect can be investigated independently, is performed for the extreme ${\pm}3{\sigma}$ conditions of the launch vehicle performance errors. Monte carlo simulations are also conducted to compute the propellant reserve, which can consider the combined effects of each error source. Finally the obtained flight performance reserves by the two approaches are compared and it is confirmed that they show similar results.

Flight Control System Design and Verification Process (비행제어시스템 설계 및 검증 절차)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.824-836
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, flight control systems are necessary to stabilize an unstable aircraft, and provides adequate handling qualities and achieve performance enhancements. Standard FCSDVP (Flight Control System Design and Verification Process) is provided to reduce development period of the flight control system. In addition, if this process is employed in developing flight control system, it reduces the trial and error for development and verification of flight control system. This paper addresses the flight control system design and verification process for the RSS aircraft utilizing design goal based on military specifications, linear and nonlinear system design and verification based on universal software, handling quality test based on HILS(Hardware In-the-Loop Simulator) environment, and ground and flight test results to verify aircraft dynamic flight responses.

A Study on the Regulation of Civil Flight Simulator

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.12-19
    • /
    • 2020
  • In Korea, the regulation is MOLIT Notice 2018-290, Guidance for Approval of Synthetic Flight Trainer as Flight Simulator and Flight Training Device. The FAA (Federal Aviation Administration) categorizes FSTD (Flight Simulation Training Device) into FFS (Full Flight Simulator) and FTD (Flight Training Device), according to its level. Additional categories for regulation are airplane and helicopter, depending on the type of aircraft. In this study, the objective tests for the handling quality of the FAA and Korean regulations were compared and analyzed. In QPS (Qualification Performance Standard), related test titles, flight conditions, and tolerance limits were analyzed for the handling quality. Based on this study, recommendations on amendments to the regulation was presented.

Autonomous flight Algorithm Design (자율형 운항 알고리즘 설계 연구)

  • Lee, Dae-Yong;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.122-130
    • /
    • 2012
  • Airborne separation assurance is a key requirement for Free Flight. This paper is to propose autonomous flight algorithm, such as extended authority of delegation, efficiency of airspace issue to deal with the empirical solution for free flight, and to measure flight efficiency and conflict detection and resolution (CD&R) by utilizing flight performance data under the two circumstances of scenario with the modeling of proposed algorithm and potential field algorithm. The results show that the autonomous flight algorithm is superior to the potential field algorithm under the circumstances of free flight airspace in terms of algorithm performance, CD&R, and flight efficiency.