• 제목/요약/키워드: Flight Motion System

검색결과 115건 처리시간 0.029초

Dynamics Parameter' Graphs of Passenger Planes

  • Aksoz, Ahmet;Dursun, Mahir;Saygin, Ali
    • International Journal of Aerospace System Engineering
    • /
    • 제2권1호
    • /
    • pp.31-37
    • /
    • 2015
  • Passenger plane flying motion graphics is very important for route, control of the flight altitude and passenger safety. For all that, it is quite useful for route away from the disruptive influences such as vibrations caused by storms or turbulence during the flight and in processes such as re-arrest of the specified route. Therefore, the response time against the adverse effects of the shape and the system is so necessary for both safety and comfort. In this study motion and route graphics were obtained under the control of an airliner C # interface with the program. In this way, graphics were obtained in solving the equations of motion in short time and design time was shortened.

Analysis of the Static and Dynamic Stability Properties of the Unmaned Airship

  • Lee, Hae Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.82-94
    • /
    • 2001
  • The purpose of this paper is to analyze the static and dynamic stability-of the unmanned airship under development ; the target airship's over-all length of hull is 50m and the maximum diameter is 12.5m. For the analysis, the dynamic model of an airship was defined and both the nonlinear and linear dynamic equations of motion were derived. Two different configuration models (KA002Y and KA003Y) of the airship were used for the target model of the static stability analysis and the dynamic stability analysis. From the result of analyses, though the airship is unstable in static stability, dynamic characteristics of the airship can provide the stable dynamic stability. All of the results, airship models and dynamic flight equations will be an important basement and basic information for the next step of developing the automatic flight control system(AFCS) and the stability augmentation system(SAS) for the unmanned airship as well as for the stratospheric airship in the future.

  • PDF

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

인간공학실험용 항공기 모의비행훈련장비 개발 (Aircraft flight simulator development for ergonomics test)

  • 오제상
    • 대한인간공학회지
    • /
    • 제16권1호
    • /
    • pp.97-105
    • /
    • 1997
  • An aircraft simulator for ergonomics testing and pilot training was developed from the joint work Agency for Defense Development(ADD) and Daewoo Heavy Industry, LTD, in Korea at first time. It is basically to satisfy the requirements established by FAA-AC-120-40C ( 1995-JAN-26). The aircraft simulator will be used mainly for ergonomics testing and pilot training for basic trainer on ADD and Korea Air Force in near futrue. This simulator reproduces faithfully the cockpit and flight characteristics of the KTX-1 aircraft. It is one of the latest full flight simulators that have the CGI(computer graphic image) visual system and six degree of freedom motions system. Development efforts focused on user-oriented design approach for ergonomics testing and flight training of pilots. Main characteristics of each subsystem are described such as cockpit, instruments, control loading system, motion system, visual system, aural system, instructor operation station and aircraft simulation softwear.

  • PDF

Flight Test Measurement and Assessment of a Flapping Micro Air Vehicle

  • Kim, Jong-Heon;Park, Chan-Yik;Jun, Seung-Moon;Chung, Dae-Keun;Kim, Jong-Rok;Hwang, Hee-Chul;Stanford, Bret;Beran, Philip;Parker, Gregory;Mrozinski, Denny
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.238-249
    • /
    • 2012
  • Flight test of flapping micro air vehicles (FMAVs) is carried out using an instrumented measurement system to obtain various engineering parameters and hence to assess the flight performance of the vehicles through the data investigation. An indoor flight test facility equipped with a motion capture system and tracking cameras is used for the work presented in this paper. Maneuvers including straight-level flight, ground flapping, takeoff and landing are tested. Spatial position and orientation data are obtained from the retro-reflective tracking markers attached to the vehicles. Subsequent test analysis is carried out by generating performance parameters from raw data and then assessing the flight performance by comparison of the vehicles. The main findings of this work confirm that the test method and procedures presented here enable the systematic numerical data measurement and assessment of the flying performances of these vehicles, and show the applicability for the test and evaluation of general flapping MAVs.

A Flight Control System design for an Unmanned Helicopter

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1375-1379
    • /
    • 2004
  • Unmanned Helicopter has several abilities such as vertical Take off, hovering, low speed flight at low altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance. These vehicles also used under risky environments without threatening the life of a pilot. Since a small aerial vehicle is very sensitive to environmental conditions, it is generally known that the flight control is very difficult problems. In this paper, a flight control system was designed for an unmanned helicopter. This paper was concentrated on describing the mechanical design, electronic equipments and their interconnections for acquiring autonomous flight. The design methodologies and performance of the helicopter were illustrated and verified with a linearized equation of motion. The LQG based estimator and controller was designed and tested for this unmanned helicopter.

  • PDF

턴테이블을 적용한 유인비행체 가상훈련 시뮬레이터용 스튜어트 플랫폼 개발 (Development of Stewart Platform installed Turntable for Manned Flight Virtual Training Simulator)

  • 서상원;우재훈;홍천한
    • 한국항공운항학회지
    • /
    • 제28권4호
    • /
    • pp.125-131
    • /
    • 2020
  • In order to study the correlation between the pilot's cognitive ability and recovery ability by applying a physical element that can cause spatial loss of position to the pilot, a turntable was installed on the top of the motion system to give a quantitative rotational error. We propose a method of simulating flight movement to reduce a difference in feeling and an intuitive method of forward kinematic analysis.

Redesign of the Adaptive Flight Control Law for the ALFLEX Flight Control System

  • Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.40.1-40
    • /
    • 2002
  • 1. Introduction 2. Vehicle Equations of Motion 3. Discrete Model of the Plant with an Unmodeled Dynamics 4. Design of an Adaptive Control 5. Parameter Adjustment Law 6. Numerical Simulations 7. Summary

  • PDF

무인항공기의 시스템 식별을 위한 비행시험기법 (A Plight Test Method for the System Identification of an Unmanned Aerial Vehicle)

  • 이윤생;석진영;김태식
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.130-136
    • /
    • 2002
  • 본 논문에서는 자동조종장치를 장착한 무인항공기의 시스템 식별을 위한 비행시험기법에 대해 기술하였다. 종운동 및 횡/방향운동 구동입력으로는 멀티스텝 입력을 이용하였다. 각 운동모드에 대해 주파수역 해석을 통해 최적의 입력시간을 설정하였다. 무인항공기의 자동조종장치를 탑재한 비행조종컴퓨터를 이용하여 프로그래밍 모드에서의 비행시험방법으로 종운동과 횡/방향운동의 분리를 통해 시스템 식별을 위한 최적의 자료를 제공하고 있다. 또한 설계치에 근사한 정확한 구동입력을 인가하여 보다 높은 입력주파수를 확보할 수 있었다. 비행시험에서는 안정된 대기상태에서 반복적인 시행을 수행하였으며, 향상된 비행체 탑재 자료저장장치를 이용하여 고품질의 비행자료를 확보하였다. 본 비행시험 기법을 적용하여 획득한 비행자료는 무인항공기의 시스템 식별을 위한 비행자료로 이용되었다.

실내 환경에서의 AR.Drone 군집 비행 시스템 개발 (Development of Indoor Navigation Control System for Swarm Multiple AR.Drone's)

  • 문성태;조동현;한상혁;류동영;공현철
    • 항공우주기술
    • /
    • 제13권1호
    • /
    • pp.166-173
    • /
    • 2014
  • 최근 쿼드콥터에 대한 관심이 증가하면서 방송에서 군에 이르기까지 다양한 분야에서 활용되고 있다. 특히 다수의 쿼드콥터를 동시에 제어하는 군집 비행 연구는 중요 임무 수행 성공 확률을 높일 수 있고, 예술과 융합되어 군무를 수행하는 등 다양한 응용에 활용될 수 있다. 본 논문에서는 AR.Drone을 활용하여 실내에서 모션 캡쳐 기반으로 다수의 비행체가 서로의 위치를 파악하고, 시나리오에 맞춰 정해진 임무를 수행하기 위해 개발된 군집 비행 시스템을 소개한다.