• Title/Summary/Keyword: Flight Dynamic

Search Result 392, Processing Time 0.025 seconds

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

Steady/Unsteady Cavitating Flow Analysis of Pilot Valve in Flight Actuator System Using Dynamic Moving Mesh (Dynamic Moving Mesh 기법을 이용한 비행조종작동기 제어용 파일럿 밸브 내부 정상/비정상 캐비테이션 유동 해석)

  • Son, Kap-Sik;Lee, Sea-Wook;Kim, Dae-Hyun;Kim, Sang-Beom;Park, Sang-Joon;Jang, Ki-Won;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.634-642
    • /
    • 2011
  • A numerical analysis of steady/unsteady flow applying cavitation model and moving mesh method was carried out in order to analyze flow and response characteristics inside the pilot valve which controls the flight actuator system. The flow of the valve was assessed according to operation temperature and time. This research has found that valve characteristics became stable at above a specific temperature and the cavitation affected valve's performance. Internal pressure and response characteristics of the valve were analyzed and flow characteristics of steady and developed unsteady flow were confirmed to be matched each other.

Dynamic study on the Interaction between Terminal Shock train and Flame Fluctuation of Supersonic Propulsion System (초음속 엔진의 흡입구 종말충격파와 연소실 화염의 상호간섭 동적연구)

  • Yeom, Hyo-Won;Kim, Sun-Kyeong;Kim, Seong-Jin;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.79-82
    • /
    • 2009
  • Unsteady numerical analysis of an entire supersonic propulsion system from intake to nozzle was performed to study dynamic interaction between terminal shock in the intake and flame in the combustor. Both acceleration and cruise flight-modes were considered. Acoustic mode of the entire engine for both flight-modes were investigated by detail analysis of pressure fluctuation at each location of engine.

  • PDF

Lateral Vehicle Control Based on Active Flight Control Technology

  • Seo Young-Bong;Choi Jae-Weon;Duan Guang Ren
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.981-992
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle (CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to follow a chosen variable without significant motion change in other specified variables. The analysis techniques for decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling (i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

Lateral Vehicle Control Based on Active Flight Control (능동비행제어기술에 기반한 자동차 횡방향 제어)

  • Seo Young-Bong;Duan Guang Ren;Choi Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1002-1011
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle(CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to commend a chosen variable without significant motion change in other specified variables. The analysis techniques fur decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling(i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

The multipath propagation loss analysis of dynamic telemetry link using the 3D antenna pattern (3차원 안테나 패턴을 사용한 동적 원격측정링크의 다중경로 전파손실 분석)

  • Kim, Kyun-Hoi;Shin, Seok-Hyun;Koh, Kwang-Ryul;Yun, Jung-Kug
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.254-260
    • /
    • 2011
  • Telemetry link is dynamic communication link that antenna gain and polarization are varying with the movement of the airplane. In this paper we calculated the antenna gain, polarization mismatch using the flight trajectory, motion of the airplane and 3D antenna pattern. And we modeled the multipath environment to the 2-Ray spherical earth reflection geometry, estimated the received signal strength when the narrow beam antenna received the RF signal transmitted from the airplane. Also we performed the flight test and after comparing measured value with the estimated value, we confirmed to almost coincide with each other.

Modal Test and Finite Element Model Update of Aircraft with High Aspect Ratio Wings (고세장비 항공기의 모드 시험 및 동특성 유한요소모델 개선)

  • Kim, Sang-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.480-488
    • /
    • 2012
  • The aircrafts with high aspect ratio wings made by a composite material have been developed, which enable high energy efficiency and long-term flight by reducing air resistance and structural weight. However, they have difficulties in securing the aeroelastic stability such as the flutter because of their long and flexible wings. The flutter is unstable self-excited-vibration caused by interaction between the structural dynamics and the aerodynamics. It should be verified analytically prior to first flight test that the flutter does not happen in the range of flight mission. Normally, the finite element model is used for the flutter analysis. So it is important to construct the finite element model representing dynamic characteristics similar to those of a real aircraft. Accordingly, in this research, to acquire dynamic characteristics experimentally the modal test of the aircraft with high aspect ratio composite wings was conducted. And then the modal parameters from the finite element analysis(FEA) were compared with those from the modal test. To make analysis results closer to test results, the finite element model was updated by means of the sensitivity analysis on variables and the optimization. Finally, it was proved that the updated finite element model is reliable as compared with the results of the modal test.

Body Measurement Changes and Prediction Models for Flight Pilots in Dynamic Postures (자세에 따른 부위별 체표길이 변화량 분석 및 예측모형 개발 -공군 전투조종사를 대상으로-)

  • Lee, Ah Lam;Nam, Yun Ja;Chen, Lin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.1
    • /
    • pp.84-95
    • /
    • 2020
  • Wearing ease is a critical factor when designing special uniforms such as flight pilot's garment and should reflect occupational properties for better performance. This study measured skin surface on 31 areas in seven postures that refer to the pilot's occupational postures as well as made six prediction models including linear mixed model (LMM) for each body part to find the best fit model. Skin surface measured from 3D body scanned images of 11 male pilot participants. There were significantly positive and negative changes in various areas from standing posture (P1) to dynamic postures (P2-P7). Six models were designed in various compositions using stature and chest circumference as fixed effects and subject and posture as random effects. The best models were linear mixed models with one fixed effect (chest circumference or stature, varies with body parts) and two random effects (subject and posture). The results of this study provide reference data to set wearing ease for pilot's garment and suggests a new methodology in this research area, but verifying the effect of diverse independent variables is left for future studies.

9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute (9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증)

  • Lee, Sang-Jong;Min, Byoung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.688-693
    • /
    • 2016
  • This paper describes the parachute dynamics modeling and simulation results for the development of training simulator of a HALO (High Altitude Low Opening) parachute, which is currently in use for military purposes. The target parachute is a rectangular shaped parafoil and its dynamic model is derived based on the real geometry data as the 9-DOF nonlinear equations of dynamics. The simulation was conducted through the moment of inertia and its aerodynamic derivatives to reflect the real characteristics based on the MATLAB/Simulink. In particular, its modeling includes the typical characteristics of the added mass and moment of inertia, which is shown in the strong effects in Lighter-Than-Air(LTA) flight vehicle. The proposed dynamic modeling was evaluated through the simulation under the spiral turning flight conditions of the asymmetric control inputs and compared with the performance index in the target parachute manual.

Structural and Dynamic Analysis of a Unmanned Cargo Multicopter Using Hybrid Power System (하이브리드 추진 시스템을 이용한 수송용 멀티콥터 무인기의 구조 및 동특성 해석)

  • Kee, Youngjung;Kim, Taekyun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.78-85
    • /
    • 2022
  • Multicopter-type unmanned aerial vehicles (UAV) are increasingly for cargo transportation to mountainous and island regions, image information acquisition in disaster areas, and emergency rescue transport. In order to successfully perform these tasks, the aircraft structure must be able to safely support the loads induced by flight conditions while ensuring the vibration and aeroelastic stability of the prop-rotor. This study introduced a structural analysis model of a 40kg payload multicopter with an engine-generator hybrid power system. The deformation and stress distribution are investigated depending on the load conditions. In addition, the vibration characteristics and aeroelastic stability of the prop-rotor were also presented to flight speed and aircraft pitch angle. The maximum thrust generated by the prop-rotor and the landing load applied to the multicopter under normal and emergency landing conditions were reviewed., It confirmed that the structure could support without failure. In addition, it confirmed that the damping characteristics of each primary locate in the constant region according to the aircraft's flight speed and the prop-rotors rotating speed.