• Title/Summary/Keyword: Flexure-shear

Search Result 229, Processing Time 0.019 seconds

Flexure-Shear Interaction Behavior of RC Columns under Cyclic Loading (주기하중을 받는 철근콘크리트 기둥의 휨-전단간의 상호거동)

  • Lee, Do-Hyung
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.151-158
    • /
    • 2002
  • 본 연구에서는 주기적인 하중하에서의 철근콘크리트 기둥의 이력응답거동을 예측할 수 있는 해석적인 모델의 개발을 다루고 있다. 철근콘크리트 기둥의 비탄성 휨, 전단 및 휨-전단 변형은 개발된 모델을 통항 주기적인 변위하에서 검토되었다. 개발된 모델들을 포함한 해석치와 실험치와의 비교분석를 통하여 본 연구에서 개발된 모델들의 검증을 실시하였고, 이 비교분석을 통하여 휨-전단간의 상호작용의 중요성을 강조하였으며, 본 연구에서 개발된 모델들의 정확성, 효율성 및 타당성을 입증하였다.

  • PDF

Shear Strength Estimation Model for Reinforced Concrete Members (철근콘크리트 부재의 전단강도 산정모델)

  • Lee, Deuckhang;Han, Sun-Jin;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • This study presents a shear strength estimation model, in which the shear failure of a reinforced concrete (RC) member is assumed to be governed by the flexure-shear mechanism. Two shear demand curves and corresponding potential capacity curves for cracked tension and uncracked compression zones are derived, for which the bond mechanism developed between reinforcing bars and surrounding concrete is considered in flexural analysis. The shear crack concentration factor is also addressed to consider the so-called size effect induced in large RC members. In addition,unlike exising methods, a new formulation was addressed to consider the interaction between the shear contributions of concrete and stirrup. To verify the proposed method, an extensive shear database was established, and it appeared that the proposed method can capture the shear strengths of the collected test specimens regardless of their material properties, geometrical features, presence of stirrups, and bond characteristics.

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Theoretical and experimental study on deflection of steel-concrete composite truss beams

  • Wang, Junli;Li, Tian;Luo, Lisheng
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.91-106
    • /
    • 2018
  • This paper investigates the deflection of the steel-concrete composite truss beam (SCCTB) at the serviceability limit state. A precise solution for the distributed uplift force of the SCCTB, considering five different loading types, is first derived based on the differential and equilibrium equations. Furthermore, its approximate solution is proposed for practical applications. Subsequently, the shear slip effect corresponding to the shear stiffness of the stub connectors, uplift effect corresponding to the axial stiffness of the stub connectors and shear effect corresponding to the brace deformation of the steel truss are considered in the derivation of deflection. Formulae for estimating the SCCTB deflection are proposed. Moreover, based on the proposed formulae, a practical design method is developed to provide an effective and convenient tool for designers to estimate the SCCTB deflection. Flexure tests are carried out on three SCCTBs. It is observed that the SCCTB stiffness and ultimate load increase with an increase in the shear interaction factor. Finally, the reliability of the practical design method is accurately verified based on the available experimental results.

Strength of Interior Post-Tensioned Flat Plate Slab-Column Connection based on Failure Mechanism (파괴 메커니즘을 고려한 내부 포스트텐션 플랫 플레이트 슬래브-기둥 접합부의 강도식 평가)

  • Kim, Min-Nam;Ha, Sang-Su;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.126-129
    • /
    • 2006
  • A bending moment $M_u$ transferred at slab-column connection is resisted at the slab critical section by flexure and shear. The ACI 318-05 Building Code(1) gives an empirical equation for the fraction ${\gamma}_{\upsilon}$ of the moment $M_u$ to be transferred by shear at the slab critical section at d/2 from the column face and also the effective wide(c+3h). The equation is based on tests of interior slab-column connections without shear reinforcement. In order to investigate the data eight test specimens were examined. The test shows that increased slab load substantially reduces both the unbalanced moment capacity and the lateral drift capacity of the connection. Especially, the specimens with the bottom reinforcement existence and nonexistence, appears remarkable differences. Studies also show that the code equation for ${\gamma}_{\upsilon}$ does not apply to all cases. The purpose of this study is to compare the test results with present ACI 318-05 Building Code provisions for design of slab-column connections and with the analysis of the experimental data for a new limitation of strength equation without shear reinforcement and bottom reinforcement.

  • PDF

Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube (강관구속 고강도 철근콘크리트 기둥의 내진성능)

  • 한병찬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

An Experimental Study on the Stirrup Effectiveness in Reinforced Concrete Beams (철근콘크리트보의 스터럽 효과에 관한 실험적 연구)

  • Lee, Young-Jae;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.205-215
    • /
    • 2005
  • The main objective of this study is to investigate the behavior of NSC and HSC beams with stirrups. Main variables were the concrete compressive strength and amount of vertical stirrups. A total of 24 beams was tested; 4 beams without web reinforcement and 20 beams with web reinforcement in the form of vertical stirrups. Main variables were 2 different compressive strengths of concrete of 26.9MPa and 63.5MPa, 5 different spacing of stirrups of 200, 150, 120, 100 and 90mm. Therefore, the results were compared with the strengths predicted by the equations of ACI code 318-99 and other researchers. The shear reinforcement ratio, where the test beams were failed simultaneously under flexure and shear, were $0.63{\rho}_{vmax}$ for NSC beams and $0.53{\rho}_{vmax}$ for HSC beams, respectively. The ACI code equation was found to be very conservative for shear design.

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.