• Title/Summary/Keyword: Flexure Hinge Mechanism

Search Result 61, Processing Time 0.025 seconds

Fabrication of composite hinge mechanism for flapping-wing motion of micro air vehicle (초소형 날갯짓 비행운동을 위한 복합재료 힌지 메커니즘 제작)

  • Kang, Lae-Hyong;Jang, Hee-Suk;Leem, Ju-Young;Han, Jae-Hung
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2009
  • This paper deals with a fabrication method of composite hinge mechanisms for flapping-wing micro air vehicles. The fabrication process includes curing process of Graphite/Epoxyprepregs, laser cutting for high fabrication repeatability, laminating of Graphite/Epoxy prepregs with Kapton film which is used for flexure, and so on. The fabricated hinge mechanism was attached with PUMPS actuators and the measured flapping angle was $173^{\circ}$ when driving voltage was 300V 170Hz.

Development of 3-DOF Parallel Manipulator Using Flexure Hinge (유연 힌지를 이용한 초정밀 3자유도 병렬 매니퓰레이터 개발)

  • Shin, Dong-Ik;Kim, Young-Soo;Suh, Seung-Whan;Han, Chang-Soo;Choi, Doo-Sun;Whang, Kyung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.127-133
    • /
    • 2009
  • We present a $3-{\underline{P}}RS$ compliant parallel manipulator actuated by PZTs. The motion ranges are $400-{\mu}m$ translation to the z-direction and 5.7-mrad rotation about any axis on the x-y plane. A mechanical amplifier whose advantage is approximately 5.5 is designed and integrated with flexure revolute and spherical joints in a monolithic way. We evaluated the performance of the system: kinematic and dynamic characteristics. In kinematic point of view, the flexures play the roles of conventional mechanism but any nonlinearity such as dead-zone and backlash, which make it possible to achieve the steady-state resolution less than $0.1{\mu}m$. The system shows resonance near 86 Hz with high magnitude and, therefore, poor transient response. But the settling is faster when the flexures are strained higher.

Design of a 6-DOF Stage for Precision Positioning and Large Force Generation (정밀 위치 결정 및 고하중 부담 능력을 지닌 6-자유도 스테이지의 설계)

  • Shin, Hyun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.105-112
    • /
    • 2013
  • This paper presents the structural design and finite element analysis of precision stage based on a double triangular parallel mechanism for precision positioning and large force generation. Recently, with the acceleration of miniaturization in mobile appliances, the demand for precision aligning and bonding has been increasing. Such processes require both high precision and large force generation, which are difficult to obtain simultaneously. This study aimed at constructing a precision stage that has high precision, long stroke, and large force generation. Actuators were tactically placed and flexure hinges were carefully designed by optimization process to constitute a parallel mechanism with a double triangular configuration. The three actuators in the inner triangle function as an in-plane positioner, whereas the three actuators in the outer triangle as an out-of-plane positioner. Finite element analysis is performed to validate load carrying performances of the developed precision stage.

A study of the design and control system for the ultra-precision stage (초정밀 스테이지 설계 및 제어 시스템에 관한 연구)

  • Park Jongsung;Jeong Kyuwon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF