• 제목/요약/키워드: Flexural strength equation

검색결과 127건 처리시간 0.023초

강섬유보강 콘크리트보의 휨강도에 관한 연구 (Flexural Strength of Steel Fiber Reinforced Concrete Beams)

  • 김우석;백승민;곽윤근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.695-700
    • /
    • 2001
  • The objective of this study is to evaluate the flexure strength of steel fiber reinforced concrete beams and the effect of the adding steel fiber to flexural strength, and is to compare the proposed equation with the previous equation for predicting the flexural strength of fiber reinforced concrete beams. Based on earlier published studies and tests, predictive equation is proposed for evaluating the flexural strength of steel fiber reinforced concrete beams. The proposed equation gave good prediction for the flexural strength of the tested beams.

  • PDF

부재의 길이가 콘크리트의 휨압축강도에 미치는 영향 (Effects of Specimen Length on Flexural Compressive Strength of Concrete)

  • 김진근;이성태;이태규
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.63-71
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a reinforced concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios (from 1,2,3 and 4) of specimens with compressive strength of 590 kgf/$\textrm{cm}^2$. Results indicate that for the region of h/c <3.0 the reduction in flexural compressive strength with increase of length-to-depth ratios was apparent. A model equation was depth of an equivalent rectangular stress block was larger than that by ACI. It was also founded that the effect of specimen length on ultimate strain was negligible. Finally more general model equation is also suggested.

부재의 깊이가 콘크리트의 휨압축강도에 미치는 영향 (Effects of Specimen Depth on Flexural Compressive Strength of Concrete)

  • 이성태;김진근;김장호
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.121-130
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to depth ratios (h/c = 1, 2 and 4) which have compressive strength of 55 MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also, the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

콘크리트의 휨압축강도에 미치는 부재깊이의 영향 (Effects of Specimen Depth on Flexural Compressive Strength of Concrete)

  • 이성태;김진근;이윤;김장호;양은익
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.115-120
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to-depth ratios(h/c=1, 2 and 4) which have compressive strength of 55MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

  • PDF

콘크리트의 휨압축강도에 미치는 부재길이의 영향 (Effects of Specimen Length on Flexural Compressive Strength of Concrete)

  • 김진근;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.579-584
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios(from 1, 2, 3 and 4) of specimens with compressive strength of 58 MPa. Results indicate that the reduction in flexural compressive strength with increase of length-to-width ratios was apparent. A model equation was derived using regression analyses on the experimental data. It was also founded that the effect of specimen length on ultimate strain was negligible, but its effect of the ultimate load and the displacement at center of specimen was distinct. Finally more general model equation is also suggested.

  • PDF

콘크리트의 휨 압축강도의 크기효과 (Size Effect for Flexural Compressive Strength of Concrete)

  • 김진근;이성태;양은익
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.157-165
    • /
    • 1999
  • 콘크리트 휨부재의 극한강도를 예측할 떼에는 부재의 크기효과는 고려하지 않는 것이 일반적이다. 그러나 콘크리트는 여러 형태의 하중에 대하여 부재의 크기가 증가함에 따라 강도가 감소하는 크기효과를 항상 나타낸다. 따라서 본 논문에서는 휨압축 부재에 대한 실험을 수행하여 크기효과를 검토하고자 한다. 이를 위하여 축 압축력과 휨모멘트를 동시에 받는 일련의 C형 공시체에 대한 실험을 수행하였다. 공시체의 크기는 3가지 였으며 콘크리트의 압축강도는 528 kg/$cm^2$로 하였다. 실험결과로부터 부재의 크기가 증가함에 따라 파괴시의 휨압축 강도가 감소하는 크기효과가 존재하며, 실린더 공시체의 축압축 강도보다 강도감소 현상이 더욱 분명함을 알 수 있었다. 최종적으로 실험자료에 대한 회귀분석을 수행하여 이를 예측할 수 있는 모델식을 제안하였다.

폴리머 콘크리트의 압축 및 휨강도 발현 특성 (Compressive and Flexural Strength Development Characteristics of Polymer Concrete)

  • 김남길;연규석
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.101-110
    • /
    • 2018
  • This study experimentally investigated the compressive and flexyral strength development characteristics of polymer concrete using four different type polymeric resins such as unsaturated polyester, vinyl ester, epoxy, and PMMA (polymethyl methacrylate) as binders. The test results show that the average compressive strength of those four different polymer concretes was 88.70 MPa, the average flexural strength was 20.30 MPa. Those test results show that compressive and flexural strengths of polymer concrete were much stronger than compressive and flexural strengths of ordinary Portland cement concrete. In addition, the relative gains of the compressive strength development at the age of 24 hrs compared to the age of 168 hrs were 68.6~88.3 %. Also, the relative gains of the flexural strength development at the age of 24 hrs compared to the age of 168 hrs were 73.8~93.4 %. These test results show that compressive and flexural strengths of each polymer concrete tested in this study were developed at the early age. Moreover, the prediction equations of compressive and flexural strength developments regarding the age were determined. The determined prediction equations could be applied to forecast the compressive and flexural strength developments of polymer concrete investigated in this study because those prediction equations have the high coefficients of correlation. Last, the relations between the compressive strength and the flexural strength of polymer concrete were determined and the flexural/compressive strength ratios were from 1/4 to 1/5. These results show that polymer concretes investigated in this study were appropriate as a flexural member of a concrete structure because the flexural/compressive strength ratios of polymer concrete were much higher than the flexural/compressive strength ratios of Portland cement concrete.

강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가 (Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete)

  • 홍건호;정승원
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

슬러리 충전 강섬유 콘크리트로 제작된 RC 보의 휨 거동 (Flexural Behavior of RC Beam Made of Slurry Infiltrated Fiber Concrete)

  • 한상훈;전병구;홍기남
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.26-33
    • /
    • 2018
  • 본 논문은 SIFCON으로 제작된 휨부재의 휨거동에 대한 실험적 해석적 연구결과를 제시한다. 우선, 12개의 SIFCON 보에 대한 휨 실험을 실시하고 휨거동을 평가하였다. 실험변수로는 강섬유 종류, 인장철근 유 무, 단면의 높이를 고려하였다. Type-A 강섬유보다 뽐힘저항성이 우수한 Type-B 강섬유를 사용한 시험체는 전단파괴가 발생하지 않고 휨파괴 거동을 보였으며, 강섬유 형상비는 인장철근을 사용하지 않는 SIFCON 보의 거동에 큰 영향을 주었으나 인장철근을 갖는 SIFCON 보의 거동에 대해서는 그 영향이 매우 미미하게 나타났다. 추가적으로 본연구에서는 SIFCON에 대한 휨강도 예측식을 제시하였다. 휨강도 예측값에 대한 실험값의 비의 평균과 표준편차가 각각 1.02와 0.04로 나타나 휨강도 예측식은 SIFCON 보의 설계 및 성능 평가에 유용하게 사용될 수 있을 것으로 생각된다.