• 제목/요약/키워드: Flexural members

검색결과 520건 처리시간 0.025초

반복하중을 받는 철근콘크리트 휨부재의 비선형해석 (Nonlinear Analysis of Reinforced Concrete Flexural Members under Cyclic Loading)

  • 변근주;김영진
    • 콘크리트학회지
    • /
    • 제3권3호
    • /
    • pp.149-157
    • /
    • 1991
  • 본 논문은 반복하중을 받는 철근콘크리트 휨부재를 비선형해석하기 위한 것으로서, 재료의 구성방정식도출, 비선형 프로그램의 개발 및 개발된 프로그램의 검증으로 구성되어 있다. 재료의 구성방정식도출에서 콘크리트는 직교이방성재료로 모형화하고, 철근은 탄소성모형으로 취하였다. 반복하중하에서 휨부재의 압축부 콘크리트에 이력거동과 강성감소, 인장부 콘크리트에는 균열개폐거동과 균열변형률의 개념을 도입하여 콘크리트의 구성방정식을 도출하였다. 반북하중을 받는 철근콘크리트 휨부재를 해석하기 위하여 4절점등매개요소와 트러스요소의 유한요소정식과 증분반복기법을 적용한 유한요소프로그램을 도출하고, 반복하중을 받는 과소 철근콘크리트 보에 대한 실험결과와 해석결과를 비교하여 개발된 재료모형과 해석프로그램의 타당성을 검증하였다.

Flexural Strength Evaluation of RC Members Laminated by Carbon Fiber Sheet

  • Park, Hae-Geun
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2002
  • This paper reports the experimental and analytical investigations for evaluating the flexural strength of a RC slab strengthened with carbon fiber sheet (CFS). The evaluation of the ultimate flexural strength of a slab is tried under the assumption that the failure occurs when the shear stress mobilized at the interface between the concrete bottom and the glued CFS reaches its bond strength. The shear stress is evaluated theoretically and the bond strength is obtained by a laboratory test. The ultimate flexural strength is obtained by flexural static test of the slab specimen, which corresponds to the part of a real slab. From the results, the new approach based on the bond strength between concrete and CFS looks feasible to evaluate the flexural strength of the CFS and RC composite slab.

  • PDF

축방향 압축력을 받는 인발성형부재의 좌굴해석 (Buckling Analysis of Pultruded Members under Axial Compression)

  • 이승식;백성용
    • 한국강구조학회 논문집
    • /
    • 제18권5호
    • /
    • pp.615-624
    • /
    • 2006
  • 본 논문에서는 부재의 lay-up에 상관없이 사용할 수 있으며 복합재료 부재의 거동에 중요한 영향을 미치는 포아송 효과를 고려할 수 있는 확장된 복합재료 보이론을 제시하고, 확장된 보이론을 바탕으로 축방향 압축력을 받는 복합재료 박판부재의 좌굴식을 유도하였다. 유도된 좌굴식을 검증하기 위해서 기존에 발표된 인발성형 vinylester/E-glass 및 polyester/E-glass T형 부재의 휨-비틀림 좌굴실험결과와 vinylester/E-glass H형 부재의 휨 좌굴실험결과를 수치예제로 사용하였다. 이론적 좌굴하중과 실험적 좌굴하중 및 유한요소해석 결과와의 비교를 통하여 본 연구에서 제안된 좌굴식이 인발성형부재의 좌굴하중을 7% 정도 안전측으로 예측하는 것을 알 수 있었다.

고인성 복합체로 보강한 조적부재의 휨 거동 평가 (Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite)

  • 양승현;김선웅;김재환;강석표;홍성욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권4호
    • /
    • pp.37-45
    • /
    • 2021
  • 논문은 조적부재에 고인성 복합체를 보강하여 내진보강 가능성을 평가하기 위한 기초연구이다. 고인성 복합체의 섬유 혼입률에 따른 성능을 검토하기 위하여 배합설계에 따라 시험체를 제조하고 유동성능, 압축강도, 휨 강도, 길이변화율 및 직접인장변형률을 측정하였다. 또한, 무보강 조적부재, 고인성 복합체로 보강한 조적부재, 고인성 복합체에 유리섬유 및 와이어 메쉬를 별도 보강한 조적부재를 제작하고 휨 강도와 최대변위를 측정하였다. 고인성 복합체를 보강한 모든 실험체들은 무보강과 비교하여 최대내력이 16배 이상의 효과가 나타났으며 균열 형상을 검토한 결과 에너지소산능력이 우수한 것으로 나타나 내진보강 가능성을 확인하였다.

Flexural Behavior of Post-tensioned Lightweight Concrete Continuous One-Way Slabs

  • Yang, Keun-Hyeok;Lee, Yongjei;Joo, Dae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.425-434
    • /
    • 2016
  • In this experimental study, six post-tensioned light weight concrete (LWC) continuous one-way slabs were tested in the following manner: the flexural behaviors of the members were compared with the calculations from the existing standards. The test also examined the effect of prestressing in tendons and proper prestress conditions to reduce the deflection and crack width, and to enhance the flexural capacity and ductility of LWC members. Flexural capacity and stress increments in unbonded tendons of the specimens were compared with those of the simply supported normal and the lightweight concrete members. The suggested safety limit from the American Concrete Institute (ACI) regulation on the maximum capacity and the stress incremental in unbonded tendons were also compared with the test results under simple and continuous supporting conditions.

고강도콘크리트 부재의 균열폭 및 균열간격 계산에 관한 연구 (Calculation of Crack Width and Crack Spacing of High-Strength Concrete Members)

  • 정기오;이기열;김대중;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.227-232
    • /
    • 2002
  • This paper describes a calculation of an average crack spacing and the maximum crack width for the high-strength concrete tensile and flexural members. Based on the uniform bond stress distribution of the average steel and concrete strains over the transfer length, the crack spacing and the crack width are proposed to utilize influence of the concrete strength and the cover thickness. This analytical results presented in this paper indicate that the proposed equations can be more effectively estimated the maximum crack width and the average crack spacing of the reinforced concrete flexural and tensile members.

  • PDF

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

철근 및 GFRP 보강 폴리머 콘크리트 T형 보의 휨 특성 (Flexural Properties of Reinforced Steel and GFRP Reinforced Polymer Concrete T-Beams)

  • 연규석;권택정;정중호;김성기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.695-698
    • /
    • 2004
  • Recently, the usage of polymer concrete mortar gathering an interest as a new construction material rapidly increases inside and outside of the country because it is an environment-friendly and endurable material. However, up to these days, the researches about the polymer composite have not been satisfactorily conducted. The polymer concrete is superior to the general cement materials in the properties of strength and durability while it is inferior in elastic modulus. Because that the members using the polymer concrete have therefore higher strength and ductility than the members of general cement concrete, an analysis equation of high-strength cement concrete can be referenced but it is not applied for the researches about the polymer concrete members. In this study, the flexural properties of T-shaped beam of the steel- and GFRP-reinforced polymer concrete are analyzed to examine the suggested analysis equation. Results of this experimental researches are to be used as the basic data in a structural design of the polymer concrete.

  • PDF

외부 프리스트레스트 콘크리트 2경간 연속보의 휨 실험 (An Experiment of the Externally Prestressed 2-span Concrete Beam)

  • 오승현;이상우;강원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.313-316
    • /
    • 2006
  • Externally prestressed structures have many advantages such as easy prestressing control and visible maintenance. Flexural strength of externally prestressed concrete members can be calculated by analysis of internal indeterminacy, which is different from internally prestressed concrete members. However, it needs nonlinear analysis considering member stiffness at strength limit state. Thus most of design codes proposed approximate methods which are empirical, based on test results. To reduce difference between accurate analysis and approximate design methods, many experiments and studies are continued. Since most of the experiments are single span beams. In order to adapt of continuous beam it needs further investigation for the continuous beam. In this study, we carried out externally prestressed 2-span concrete beam test to find out the flexural behavior and strength of externally prestressed concrete members.

  • PDF