• Title/Summary/Keyword: Flexural Moment

Search Result 544, Processing Time 0.029 seconds

An Investigation of Reliability and Safety Factors in RC Flexural Members Designed by Current WSD Standard Code (현행(現行) 허용응력설계법(許容應力設計法)으로 설계(設計)되는 RC 휨부재(部材)의 신뢰성(信賴性)과 안전율(安全率) 고찰(考察))

  • Shin, Hyun Mook;Cho, Hyo Nam;Chung, Hwan Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.33-42
    • /
    • 1981
  • Current standard code for R.C. design consists of two conventional design parts, so called WSD and USD, which are based on ACI 318-63 and 318-71 code provisions. The safety factors of our WSD and USD design criteria which are taken primarily from ACI 318-63 code are considered to be not appropriate compared to out country's design and construction practices. Furthermore, even the ACI safety factors are not determined from probabilistic study but merely from experiences and practices. This study investigates the safety level of R.C. flexural members designed by the current WSD safety provisions based on Second Moment Reliability theory, and proposes a rational but efficient way of determining the nominal safety factors and the associated flexural allowable stresses of steel bars and concretes in order to provide a consistent level of target reliability. Cornell's Mean First-Order Second Moment Method formulae by a log normal transformation of resistance and load output variables are adopted as the reliability analysis method for this study. The compressive allowable stress formulae are derived by a unique approach in which the balanced steel ratios of the resulting design are chosen to be the corresponding under-reinforced sections designed by strength design method with an optimum reinforcing ratio. The target reliability index for the safety provisions are considered to be ${\beta}=4$ that is well suited for our level of construction and design practices. From a series of numerical applications to investigate the safety and reliability of R.C. flexural members designed by current WSD code, it has been found that the design based on WSD provision results in uneconomical design because of unusual and inconsistent reliability. A rational set of reliability based safety factors and allowable stress of steel bars and concrete for flexural members is proposed by providing the appropriate target reliability ${\beta}=4$.

  • PDF

Ductility Capacity of Slender-Wind R/C Walls (긴 세장한 R/C 벽체의 연성능력)

  • 홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.202-212
    • /
    • 2000
  • This study investigates the ductility capacity of slender-wide reinforced concrete walls under predominant flexural moment loading. The experimental work for this study aims to provide design guidelines for bar detailing in critical regions under compressive stress in particular in case of slender-wide RC walls. According to the experimental observation the Bernoulli hypothesis of linear strain distribution is no longer valid and the ultimate compressive strain of concrete is significantly reduced, It is postulated that the nonlinear strain distribution causes the concentrated compressive stressed region and hence the premature crushing failure at the toe of walls. The reduced ultimate strain and nonlinear strain distribution need transverse reinforcement for confinement and more realistic models for the strength and displacement estimation of slender-wide RC wall.

  • PDF

Experiments on Second -Order Behavior of High Strength Concrete Columns (고강도 콘크리트 기둥의 2계 거동에 관한 실험적 연구)

  • 김진근;양주경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.167-172
    • /
    • 1992
  • To analyze the effects compressive strength of concrete and longitudinal steel ratio on second-order moment of columns, 30tied rein reinforced concrete columns with hinged ends were tested. The 80mm square cross section was used and the amount of eccentricity was 24mm. The compressive strengths of column specimens with slenderness ratios of 10, 60, and 100were 250, 648 and 880kg/$\textrm{cm}^2$, and the longitudinal steel ratios were 1.98%(4-D6) and 3.95%(8-D6). The ratio of ultimate load capacity to that of short column with the same eccentricity (Pu/Pn) was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of slender column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that with increasing steel ratio, the value of Pu/Pn and the lateral displacement at the ultimate load were larger for the same slenderness ratio.

  • PDF

Effects of Member Sizes on ACI Rectangular Stress Block and Actual Stress Distribution (ACI 직사각형 응력블럭과 실제 응력분포에 부재의 크기가 미치는 영향)

  • 이성태;김장호;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.909-914
    • /
    • 2001
  • It is important to consider an effect of concrete member sizes when estimating the ACI rectangular stress block of a reinforced concrete flexural member. However, the experimental data and analytical analyses are still not available for a proper evaluation. For all types of loading conditions, the trend is that the size of an ACI rectangular stress block tends to change when the member sizes change. In this paper, the size variations of strength coefficients for ACI rectangular stress block and actual stress distribution have been studied. Results of a series of C-shaped specimens subjected to axial compressive load and bending moment were adopted from references 1 and 2. The analysis results show that the effect of specimen sizes on strength coefficients for ACI rectangular stress block and actual stress distribution of concrete member was apparent. Thus, the results suggest that the current strength criteria based design practice should be reviewed.

  • PDF

Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Model Experiment (모형 실험에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구)

  • 이대혁;김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1998
  • Considering the mechanical cracking in the concrete lining of tunnels occurring in relatively short period of time after the construction, there is a need for the study on the mechanical behavior and the cracking characteristics of double lining support system(shotcrete and concrete lining). For the proposed study, downscaled lining models of Kyung-Bu High Speed Railway tunnels were tested. Most longitudinal cracks at about 93 percentage developed within 30 arch degree from the vault. Cracking load was about 30 percentage of the failure load and the deflection under the cracking load was 10 percentage of the deflection under the failure load. The overbreak around the vault contributed to the reduction of the capacity for cracking and failure by the percentage greater than the reduced effective depth. Of several rock block types considered in this research, the triangular block was the most critical, and the right triangular block under eccentric load was secondly critical for the stability of the tunnel lining system. The dimensionless support reaction curves were derived from the experimental results for single and double lining. The general equation to compute the designed flexural moment was modified.

  • PDF

Flexural Behaviors of Sandwich Panels of Polymer Mortar Reinforced with GFRP (GFRP보강 폴리머 모르타르 샌드위치 패널의 휨 거동)

  • 지경용;연규석;유근우;김남길;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.159-164
    • /
    • 2001
  • In this study, a polymer mortar sandwich panel (PMSP) was developed : Core was made with the polymer mortar whose compressive strength was about 840 kgf/$\textrm{cm}^2$, and both facings were made with the glass fiber reinforced plastics (GFRP). The results showed that the strain energies and the ductility indices increased 16-340 times and 2-8 times, respectively, as the thicknesses of facings increased from 0.6 to 3.0mm with fixing the core thickness to constants (12-36mm). On the other hand, these values showed a tendency of decrease as the core thickness increased regardless of thickness of facings. A set of basic data for the structural analysis could be provided by investigating the correlations, within the scope of this research, between the resisting moment and the thicknesses of core and facings.

  • PDF

Flexural Behavior of Sandwich Panels Using MMA Modified Polymer and GFRP (GFRP보강 MMA개질 폴리머 모르타르 샌드위치 패널의 휨 거동)

  • 연규석;유근우;주명기;김남길;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.105-110
    • /
    • 2002
  • In this study, a MMA modified polymer mortal sandwich panels was developed : Core was made with the MMA modified polymer mortar whose compressive strength was about 1020 kgf/cm$^2$, and both facings were made with the glass fiber reinforced plastics (GFRP). The results showed that the strain energies increased 20-33 times, respectively, as the thicknesses of facings increased from 1.50 to 2.76 mm with fixing the core thickness to constants (30-50 mm). On the other hand, these values showed a tendency of decrease as the core thickness increased regardless of thickness of facings. A set of basic data for the structural analysis could be provided by investigating the correlations, within the scope of this research, between the resisting moment and the thicknesses of core and facings.

  • PDF

A Study on Experimental of Two-spans Beam with Steel Fiber According to Repetitive Shear Stress (반복전단응력에 의한 강섬유 2경간 연속보의 실험적 연구)

  • Kwak, Kae-Hwan;Suk, In-Soo;Cho, Sun-Jung;Park, Jong-Gun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.181-184
    • /
    • 2002
  • In this research, a basis test on steel fiber concrete's material property was carried out and optimum design as well as material property was examined. In corroboration of it, the compressive strength was compared with the tensile strength and this paper tried to get the initial load of flexural cracking and the ultimate load in the positive-negative moment section through the static test of beam. The addition rate of the steel fiber, 0.75 SFRC specimen was failed at $65{\sim}75%$ of the static ultimate strength and it could be concluded that fatigue strength to two million cycle was around 75.2%.

  • PDF

Soil-structure interaction analysis of beams resting on multilayered geosynthetic-reinforced soil

  • Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 2012
  • In this paper, soil-structure interaction analysis has been presented for beams resting on multilayered geosynthetic-reinforced granular fill-soft soil system. The soft soil and geosynthetic reinforcements are idealized as nonlinear springs and elastic membranes, respectively. The governing differential equations are solved by finite difference technique and the results are presented in non-dimensional form. It is observed from the study that use of geosynthetic reinforcement is not very effective for maximum settlement reduction in case of very rigid beam. Similarly the reinforcements are not effective for shear force reduction if the granular fill has very high shear modulus value. However, multilayered reinforced system is very effective for bending moment and differential settlement reduction.

An Efficient Inelastic Analysis of a Moment Frame Steel Structure with Reduced Beam Section (Reduced Beam Section을 가진 철골모멘트 골조의 효율적인 비탄성 해석)

  • 조소훈;박찬헌;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.503-510
    • /
    • 2004
  • One of the methods improving the seismic behavior of a structure is the frame with reduced beam section (RBS) which cuts a segment of flanges of the beam near the beam-to-column connection so that the section with reduced flanges has smaller flexural strength than the beam end. It is difficult to analyze the RBS frame because RBS portion has circular-cut type flange. And inelastic response of the steel frame with the RBS is very sensitive to the RBS model. In this paper, the analytical models of RBS portion are investigated and the results of the inelastic analysis for RBS analytical models are compared and then the analytical model for RBS is determined based on the results of inelastic analysis. Inelastic behavior of the RBS frame and its dynamic characteristics are investigated for selected analytical model of RBS.

  • PDF