• Title/Summary/Keyword: Flexural Loading

Search Result 718, Processing Time 0.023 seconds

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.

Experimental and Analytical Studies on the Non-Linear behaviors of Pre-Stressed Steel H-Beams (프리스트레스트 H형강 거더의 비선형 거동에 대한 실험적 및 이론적 연구)

  • Kim, Moon-Young;Kim, Nak-Kyung;Oh, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.359-366
    • /
    • 2019
  • Experimental and analytical studies on the behavioral characteristics of a pre-stressed (PS) steel girder are conducted to investigate the effects of deviators on the non-linear inelastic properties of the PS system. In this regard, 4 test specimens consisting of a steel H-beam, a straight cable with eccentricity, anchorages, and deviators are built and failure tests are performed under two-point loading. In addition, in-plane elastic deformation theories for the PS system without a deviator, and with three deviators at regular intervals are analytically formulated and solved using a symbolic calculation technique. To verify the validity of the experimental and the proposed analytical theories, the results obtained using FEM models composed of beam elements, rigid beam elements, and truss cable elements, are compared to the experimental results and the analytical solutions. As a result, it is determined that externally installed un-bonded deviators inhibit flexural deformation of the deformed beam to such an extent that their elastic stiffness, and failure strength are significantly improved compared to those of the PS system without deviators.

Continuity for Double Tee Slabs (더블티 슬래브의 연속화)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • The main objective of this study is to develop a continuity of double tee slab with two modified dap-ends to solve the problems of excessive moment, slab depth, deflection, and joint cracking in the original simply supported double tee slab systems. The modified joint is produced in a combination with two slabs with modified dap and one rectangular beam. The modified joint can be justified as following different merits. The span capacity for a design load is increased, while the deflection of the slab is decreased due to the decrease of positive moment at the center span of the slab. The joint cracking between slab and beam, which occur frequently in the original slab systems of double tee will be reduced. No more additional form work is needed to cast topping concrete for continuity. Three point loading tests are performed on the specimens with a variable of an amount of main longitudinal reinforcement to evaluate flexural and shear behavior. Following conclusions are obtained from the experimental investigation. The continuity of double tee slab effectively is provided by placing longitudinal steel reinforcement in the topping concrete over the connection, and generally leads to an increase in span capacity of double tee slabs with reduced deflection. It is more effective to control the initial cracking at the connection than that of some simply supported double tee slab systems.

An Experimental Study on the Performance of RC Beam according to the Rapid Freezing and Thawing Test Method in the Air (기중 급속 동결 융해 시험 방법에 따른 철근콘크리트 보의 성능 실험 연구)

  • Kim, Sang-Woo;Lee, Dong-Ju;Kim, Kyeong-Min;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.46-55
    • /
    • 2021
  • Concrete structures can cause various problems as the number of common years increases when exposed to external extreme climate conditions. Among these problems, freezing and thawing occur due to the action of extreme climate factors such as heavy rain and heavy snow, which have become the most problematic in recent years. In this study, we present a rapid freezing and thawing test method of concrete in the air, referring to KS F 2456, as Seoul exhibits very dry weather during the period of freezing and thawing. Concrete test specimens and RC beams were fabricated to perform rapid freezing and thawing of 0, 100, 200, and 300 cycles, and the performance evaluation confirmed the degradation of each subject in material and member units. The design strength of 24 MPa, which performs rapid freezing and thawing in the air up to 300 cycles, decreases by 5.24 MPa (21%), and as rapid freezing and thawing in the air increases the stress burden on reinforced concrete bending members, reducing the energy absorption (dissipation) ability of structures due to earthquakes.

Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers (아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가)

  • Dong-Hwan Kim;Min-Su Jo;Jin-Hyeung Choi;Woo-Rae Cho;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • This study evaluates the performance of reinforced concrete columns using hybrid fiber sheets for structural behavior. The purpose of this method is to improve the load-bearing capacity of the reinforced structure by impregnating a hybrid fiber sheet, which is woven by arranging aramid and glass fibers uniaxially and attached to an aged concrete structure requiring reinforcement with epoxy. In particular, not only the weight reduction of the material obtained by using a fiber lighter than the steel material, but also the low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element. The low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element, resulting in weight reduction compared to steel. The study conducted structural tests on four specimens, with the hybrid reinforcement method and failure mode as main variables. Specimen size and loading conditions were chosen to be comparable with previous studies. The structural performance of the specimen was evaluated using energy dissipation capacity and ductility. Analysis shows that excellent results can be obtained with the hybrid fiber sheet reinforcement.

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.