• 제목/요약/키워드: Flexural Loading

검색결과 717건 처리시간 0.025초

가력중 탄소섬유로 보강된 RC보의 휨보강 효과 (On the Flexural Strengthening Effect of the CFS Strengthened RC Beam under Pre-Loading Condition)

  • 송원영;장희석;차영수;이홍주;김희성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.92-95
    • /
    • 2004
  • The flexural strengthening effect of the RC beam strengthened with CFS under pre-loading condition was studied here. The beams were additionally strengthened at the each end with U type wrapping using the same CFS. Main variables considered were number of CFS plies(1,2) and pre-loading values(30,50,$70\%$ of the yield load of the control beam). The flexural strengthening effect was investigated through comparing the yield load, ultimate load, and ductility index of the specimens.

  • PDF

Flexural stiffness of steel-concrete composite beam under positive moment

  • Ding, Fa-Xing;Liu, Jing;Liu, Xue-Mei;Guo, Feng-Qi;Jiang, Li-Zhong
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1369-1389
    • /
    • 2016
  • This paper investigates the flexural stiffness of simply supported steel-concrete composite I-beams under positive bending moment through combined experimental, numerical, and different standard methods. 14 composite beams are tested for experimental study and parameters including shear connection degree, transverse and longitudinal reinforcement ratios, loading way are also investigated. ABAQUS is employed to establish finite element (FE) models to simulate the flexural behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length, loading way, on the flexural stiffness is also studied by parametric study. In addition, three widely used standard methods including GB, AISC, and British standards are used to estimate the flexural stiffness of the composite beams. The results are compared with the experimental and numerical results. The findings have provided comprehensive understanding of the flexural stiffness and the modelling of the composite beams. The results also indicate that GB 50017-2003 could provide better results in comparison to the other standards.

Flexural behavior model for post-tensioned concrete members with unbonded tendons

  • Kim, Kang Su;Lee, Deuck Hang
    • Computers and Concrete
    • /
    • 제10권3호
    • /
    • pp.241-258
    • /
    • 2012
  • The need for long-span members increases gradually in recent years, which makes issues not only on ultimate strength but also on excessive deflection of horizontal members important. In building structures, the post-tension methods with unbonded tendons are often used for long-span members to solve deflection problems. Previous studies on prestressed flexural members with unbonded tendons, however, were mostly focused on the ultimate strength. For this reason, their approaches are either impossible or very difficult to be implemented for serviceability check such as deflection, tendons stress, etc. Therefore, this study proposed a flexural behavior model for post-tensioned members with unbonded tendons that can predict the initial behavior, before and after cracking, service load behavior and ultimate strength. The applicability and accuracy of the proposed model were also verified by comparing with various types of test results including internally and externally post-tensioned members, a wide range of reinforcement ratios and different loading patterns. The comparison showed that the proposed model very accurately estimated both the flexural behavior and strength for these members. Particularly, the proposed model well reflected the effect of various loading patterns, and also provided good estimation on the flexural behavior of excessively reinforced members that could often occur during reinforcing work.

철근콘크리트 아치 데크의 정적 휨 거동 (Flexural Behavior of RC Arch Deck Subjected to Static Loading)

  • 엄기하;양달훈;김성재;김장호
    • 콘크리트학회논문집
    • /
    • 제29권4호
    • /
    • pp.371-378
    • /
    • 2017
  • 본 연구에서는 철근콘크리트 아치 데크의 정적재하실험을 통해 휨 거동을 평가하였다. 휨 실험은 길이 2.5 m, 폭 1.2 m, 중심단면 두께 100 mm, 단부단면 두께 160 mm의 실제 크기 프리캐스트 철근콘크리트 아치 데크의 정적재하 실험을 실시하였다. 실험결과는 극한설계강도에 비하여 약 1.74배 높은 하중을 견디는 것으로 관찰되었다. 반면, 실험체에는 구간에 따라 각각 다른 거동이 관찰되었다. 이러한 거동은 아치 데크와 이를 지지하는 반력대 사이에 일체거동이 이뤄지지 않은 이유로 인한 것으로 판단되었다. 그러므로 추후 연구에서는 반력대를 제외한 아치 데크의 정적재하 실험을 통해 정밀한 거동을 확인해야 할 것으로 사료된다. 실험결과를 종합하여 보면, 철근콘크리트 아치 데크는 일반형태의 바닥판에 비하여 우수한 구조적 이점을 통해 설계기준보다 높은 구조성능을 나타내었다. 이를 통해, 향후에는 장지간 바닥판으로써의 활용이 가능할 것으로 사료된다.

Experimental and numerical investigation on the behavior of concrete-filled rectangular steel tubes under bending

  • Zhang, Tao;Gong, Yong-zhi;Ding, Fa-xing;Liu, Xue-mei;Yu, Zhi-wu
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.231-253
    • /
    • 2021
  • Pure bending loading conditions are not frequently occurred in practical engineering, but the flexural researches are important since it's the basis of mechanical property researches under complex loading. Hence, the objective of this paper is to investigate the flexural behavior of concrete-filled rectangular steel tube (CFRT) through combined experimental and numerical studies. Flexural tests were conducted to investigate the mechanical performance of CFRT under bending. The load vs. deflection curves during the loading process was analyzed in detail. All the specimens behaved in a very ductile manner. Besides, based on the experimental result, the composite action between the steel tube and core concrete was studies and examined. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the computed results with experimental observations. The full curves analysis on the moment vs. curvature curves was further conducted, where the development of the stress and strain redistribution in the steel tube and core concrete was clarified comprehensively. It should be noted that there existed bond slip between the core concrete and steel tube during the loading process. And then, an extensive parametric study, including the steel strength, concrete strength, steel ratio and aspect ratio, was performed. Finally, design formula to calculate the ultimate moment and flexural stiffness of CFRTs were presented. The predicted results showed satisfactory agreement with the experimental and FE results. Additionally, the difference between the experimental/FE and predicted results using the related design codes were illustrated.

Bending characteristics of corroded reinforced concrete beam under repeated loading

  • Fang, Congqi;Yang, Shuai;Zhang, Zhang
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.773-790
    • /
    • 2013
  • Bending behaviors of corroded reinforced concrete (RC) beams under repeated loading were investigated experimentally. A total of twenty test specimens, including four non-corrosion and sixteen corrosion reinforced concrete beams, were prepared and tested. A numerical model for flexural and cracking behaviors of the beam under repeated loading was also developed. Effects of steel corrosion on reinforced concrete beams regarding cracking, mid-span deflection, stiffness and bearing capacity of corroded beams were studied. The impact of corrosion on bond strength as the key factor was investigated to develop the computational model of flexural capacity. It was shown from the experimental results that the bond strength between reinforcement and concrete had increased for specimen of low corrosion levels, while this effect was changed when the corrosion level was higher. It was indicated that the bearing capacity of corrosion beam increased even at a corrosion level of about 5%.

Flexural performance of double skin composite beams at the Arctic low temperature

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.431-446
    • /
    • 2020
  • This paper presents the flexural performance of double skin composite beams (DSCBs) at different Arctic low temperatures. 12 DSCBs were prepared and tested under two-point loading at different Arctic low temperatures of 20, -30, -50, and -70℃. The studied parameters include low-temperature level (T), steel-faceplate thickness (t), shear span ratio (λ), and spacing of headed studs (S). The experimental investigations under two-point loading tests showed that flexural failure occurred to all DSCBs, even including the specimen designed with the small λ ratio of 2.9. The ultimate strength behaviours of DSCBs were improved due to the improved mechanical properties of constructional materials and the confinement on shear connectors. The DSCB subjected to two-point loading and low temperatures exhibits a five-stage working mechanism. The stiffness and strength indexes of DSCBs increase linearly with temperature and t value increasing, while decreasing as shear span ratio boosts. In the contrast, the change of S value from 150 to 200 mm has little effect on the ultimate strength behavior of DSCB.

Behavior of Laterally Damaged Prestressed Concrete Bridge Girders Repaired with CFRP Laminates Under Static and Fatigue Loading

  • ElSafty, Adel;Graeff, Matthew K.;Fallaha, Sam
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.43-59
    • /
    • 2014
  • Many bridges are subject to lateral damage for their girders due to impact by over-height vehicles collision. In this study, the optimum configurations of carbon fiber reinforced polymers (CFRP) laminates were investigated to repair the laterally damaged prestressed concrete (PS) bridge girders. Experimental and analytical investigations were conducted to study the flexural behavior of 13 half-scale AASHTO type II PS girders under both static and fatigue loading. Lateral impact damage due to vehicle collision was simulated by sawing through the concrete of the bottom flange and slicing through one of the prestressing strands. The damaged concrete was repaired and CFRP systems (longitudinal soffit laminates and evenly spaced transverse U-wraps) were applied to restore the original flexural capacity and mitigate debonding of soffit CFRP longitudinal laminates. In addition to the static load tests for ten girders, three more girders were tested under fatigue loading cycles to investigate the behavior under simulated traffic conditions. Measurements of the applied load, the deflection at five different locations, strains along the cross-section height at mid-span, and multiple strains longitudinally along the bottom soffit were recorded. The study investigated and recommended the proper CFRP repair design in terms of the CFRP longitudinal layers and U-wrapping spacing to obtain flexural capacity improvement and desired failure modes for the repaired girders. Test results showed that with proper detailing, CFRP systems can be designed to restore the lost flexural capacity, sustain the fatigue load cycles, and maintain the desired failure mode.

휨 하중을 받는 재생 PET 폴리머 콘크리트의 인장크리프 모델 (Tension Creep Model of Recycled PET Polymer Concrete with Flexural Loading)

  • 채영석;태기호
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.117-125
    • /
    • 2012
  • In recent years, polymer concrete based on polyester resin have been widely generalized and the research of polymer concrete have been actively pursued by the technical innovations. Polymer concrete is a composite consisting of aggregates and an organic resin binder that hardens by polymerization. Polymer concrete are stronger by a factor of three or more in compression, a factor of four to six in tension and flexural and a factor of two in impact when compared with portland cement concrete. In view of the growing use of polymer concrete, it is important to study the physical characteristics of the material, emphasizing the short term properties as well as long term mechanical behavior. If polymer concrete is to be used in flexural load-bearing application such as in beam, it is imperative to understand the deformation of the material under sustained loading conditions. This study is proposed to empirical and mechanical model of polymer concrete tension creep using long-term experimental results and mathematical development. The test results showed that proposed model has been used successfully to predict creep deformations at a stress level that was 20 percent of the ultimate strength and viscoelastic behavior of recycled-PET polymer concrete is linear of stress level up to 30 percent. It is expected that the present model allows more realistic evaluation of varying stresses in polymer concrete structures with a constant loading.

Degradation reliability modeling of plain concrete for pavement under flexural fatigue loading

  • Jia, Yanshun;Liu, Guoqiang;Yang, Yunmeng;Gao, Ying;Yang, Tao;Tang, Fanlong
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.469-478
    • /
    • 2020
  • This study aims to establish a new methodological framework for the evaluation of the evolution of the reliability of plain concrete for pavement vs number of cycles under flexural fatigue loading. According to the framework, a new method calculating the reliability was proposed through probability simulation in order to describe a random accumulation of fatigue damage, which combines reliability theory, one-to-one probability density functions transformation technique, cumulative fatigue damage theory and Weibull distribution theory. Then the statistical analysis of flexural fatigue performance of cement concrete tested was carried out utilizing Weibull distribution. Ultimately, the reliability for the tested cement concrete was obtained by the proposed method. Results indicate that the stochastic evolution behavior of concrete materials under fatigue loading can be captured by the established framework. The flexural fatigue life data of concrete at different stress levels is well described utilizing the two-parameter Weibull distribution. The evolution of reliability for concrete materials tested in this study develops by three stages and may corresponds to develop stages of cracking. The proposed method may also be available for the analysis of degradation behaviors under non-fatigue conditions.