• 제목/요약/키워드: Flexural Free Vibration

검색결과 77건 처리시간 0.022초

경계조건 변화에 따른 Pasternak 지반으로 지지된 원호형 띠기초의 휨 자유진동에 관한 변수연구 (Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End Constraints Resting on Pasternak Soil)

  • 이병구;이광범;강희종;윤희민
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.835-846
    • /
    • 2007
  • 이 논문은 Pasternak 지반으로 지지된 변화폭 원호형 띠기초의 휨 자유진동에 관한 연구이다. 단면폭은 띠기초의 중앙점을 중심으로 대칭 일차 함수를 갖는 변화폭으로 선정하였다. 이 연구에서 지반은 전단층을 갖는 탄성지반인 Pasternak 지반으로 모형화 하였고 회전관성과 전단변형을 고려한 곡선 띠기초의 자유진동을 지배하는 상미분방정식을 유도하였다. 이 상미분방정식을 수치해석하여 고유진동수 및 진동형을 산출하였다. 수치해석 예에서는 회전-회전, 회전-고정 및 고정-고정의 3개의 지점조건을 고려하였다. 띠기초의 무차원 변수들이 고유진동수에 미치는 영향을 분석하였다.

두께가 얇은 단면을 갖는 보의 진동특성 (Vibration Characteristics of Thin-Walled Beams)

  • 오상진;이재영;모정만;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.709-712
    • /
    • 2004
  • A study of the coupled flexural-torsional vibrations of thin-walled beams with monosymmetric cross-section is presented. The governing differential equations for free vibration of such beams are solved numerically to obtain natural frequencies and their corresponding mode shapes. The beam model is based on the Bernoulli-Euler beam theory and the effect of warping is taken into consideration. Numerical results are given for two specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints both including and excluding the effect of warping stiffness. The effect of warping stiffness on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

Physical insight into Timoshenko beam theory and its modification with extension

  • Senjanovic, Ivo;Vladimir, Nikola
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.519-545
    • /
    • 2013
  • An outline of the Timoshenko beam theory is presented. Two differential equations of motion in terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and axial shear angle. The governing equations are condensed into two independent equations of motion, one for flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam response functions of all type of vibrations is analysed.

Differential transform method for free vibration analysis of a moving beam

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.645-658
    • /
    • 2010
  • In this study, the Differential Transform Method (DTM) is employed in order to solve the governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equation of the motion. The calculated natural frequencies of the moving beams with various combinations of boundary conditions using DTM are tabulated in several tables and are compared with the results of the analytical solution where a very good agreement is observed.

등분포 모멘트를 받는 아치의 횡 자유진동 (Effect of Initial Uniform Moment on Lateral Free Vibration of Arches)

  • 염응준;한택희;임남형;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 2002
  • Recently, arches are used structurally because of their high in-plane stiffness and strength, which result from their ability to transmit most of the applied loading by axial forces actions, so that the bending actions are reduced. On the other hand, the resistances of arches to (out-of-plane,) flexural-torsional behavior depend on the rigidities EI/sub y/, for lateral bending, GJ for Uniform torsion, and EI/sub w/ for warping torsion which are related to axial stress for flexural-torsional behavior. The resistance of an arch to out-of-plane behavior may be reduced by its in-plane curvature, and so it may require significant lateral bracing. Thus. it is supposed that In-plane preloading which cause an axial stress, have an effect on out-of-plane free vibration behavior of arches. Because axial stresses caused increase or decrease out-of-plane stiffness. But study about this substance is insufficient. In this thesis, We will study an effect of preloading on lateral free vibration of arches, using finite element method based on Kang and Yoo's curved beam theory (about curved beam element have 7 degree of freedom including warping) with FORTRAN programming.

  • PDF

전달강성계수법에 의한 보형구조물의 종.굽힘진동해석 (Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수;김용복
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

박벽 C형 복합재료 보의 휨-비틀림 진동 해석 (Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams)

  • 김영빈;이재홍
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.31-40
    • /
    • 2002
  • 적층된 박벽 복합재료 보의 자유 진동에 관한 연구를 수행하였다. 박벽 C형강 복합재료의 동적 거동에 적용 가능한 일반적인 해석 모델을 개발하였다. 이 모델은 classical lamination theory를 기초로 두고 있으며, 임의의 적층 상태의 구성 즉, 대칭뿐만 아니라 비대칭의 적층 상태, 그리고 다양한 경계조건에 따른 휨과 비틀림 형상의 연계(coupling)을 설명하였다. 변위를 기반으로 한 일차원 유한 요소 모델은 박벽 복합재료 보의 고유 진동수와 그에 대응하는 진동 모드를 예측하기 위해 개발되었다. 운동방정식은 Hamiton의 원리로부터 유도되었으며, 수치적인 결과는 박벽 복합재 보에서 복합재료의 진동수와 모드 형상에 대해 적층각, 계수비, 그리고 경계조건의 영향을 얻을 수 있었다.

Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel

  • Kar, Vishesh R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.693-709
    • /
    • 2015
  • In this article, nonlinear free vibration behaviour of functionally graded spherical panel is analysed. A nonlinear mathematical model is developed based on higher order shear deformation theory for shallow shell by taking Green-Lagrange type of nonlinear kinematics. The material properties of functionally graded material are assumed to be varying continuously in transverse direction and evaluated using Voigt micromechanical model in conjunction with power-law distribution. The governing equation of the shell panel is obtained using Hamilton's principle and discretised with the help of nonlinear finite element method. The desired responses are evaluated through a direct iterative method. The present model has been validated by comparing the frequency ratio (nonlinear frequency to linear frequency) with those available published literatures. Finally, the effect of geometrical parameters (curvature ratio, thickness ratio, aspect ratio and support condition), power law indices and amplitude of vibration on the frequency ratios of spherical panel have been discussed through numerical experimentations.

부분적으로 물에 잠겨있는 Shell 구조물의 바닥면과 거리변화에 따른 진동해석 연구 (Vibration Analysis for Partially Immersed Shell Structure in Water with Gap from Bottom)

  • 구재량;곽문규;송오섭;배춘희
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.905-915
    • /
    • 2011
  • The free flexural vibration of a hanged clamped-free cylindrical shell partially submerged in water with gap from bottom is investigated. The fluid is assumed to be inviscid and irrotational. The cylindrical shell is modeled by using the Rayleigh-Ritz method based on the Sanders shell theory. The kinetic energy of the fluid is derived by solving the boundary-value problem related to the fluid motion. The natural vibration characteristics of the partially submerged cylindrical shell are discussed with respect to the added virtual mass approach. In this study, experiments were carried out to confirm theoretical results. It was found that theoretical prediction is in good agreement with experimental results.