• Title/Summary/Keyword: Flexural Capacity

Search Result 909, Processing Time 0.025 seconds

Characteristics of Flexural Behavior of high Strength Concrete According to the Mixture Rate of Steel Fiber (강섬유 혼입율에 따른 고강도 콘크리트의 휨 거동 특성)

  • Chio, Jung-Gu;Lee, Gun-Cheol;Lee, Gun-Young;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.82-83
    • /
    • 2015
  • Recently, the research on steel fiber reinforced concrete has been actively conducted to compensate the defect of brittle fracture of concrete and to enhance toughness. Therefore, the effect of the mixture rate of straight steel fiber on flexural behavior of high strength steel fiber reinforced concrete was evaluated in this research. As a result, when 2% of steel fiber was mixed with concrete volume ratio, it showed the best flexural capacity.

  • PDF

Flexural Behavior of RC Beams Strengthened with Steel Plates/Carbon Fiber Sheets(CFS) under Pre-Loading Conditions

  • Shin, Yeong-Soo;Hong, Geon-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • The reinforced concrete(RC) flexural members strengthened with steel plate/CFS at soffit have initial stresses and strains in reinforcements and concrete caused by the service loads at the time of retrofitting works. These initial residual stresses and strains of strengthened beams may affect the flexural performance of the rehabilitated beams. The objective of this study is to evaluate and verify the effectiveness of rehabilitation by external bonded steel plates and CFS to the tension face of the beams under three conditions of pre-loading. Thirteen beam specimens are tested and analyzed. Main test parameters are pre-loading conditions, strengthening materials and reinforcement ratio of specimens. The effect of test parameters on the strengthened beams is analyzed from the maximum load capacity, load-deflection relationship, state of stress of the materials. crack propagation phase, and failure modes. Both test results and design formulas of ACI Code provisions are compared and evaluated.

  • PDF

Performance and Evaluation of Flexural Toughness Indices for HPFRCCs (고인성 섬유보강 시멘트 복합체의 휨인성 성능 및 평가)

  • Han Byung Chan;Yang Il-Seung;Park Wan Shin;Jeon Esther;Kim Sun Woo;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.615-618
    • /
    • 2004
  • The primary role of fibers in High performance fiber reinforced cement composites(HPFRCCs) is to improve the toughness, or energy absorption capacity, of the composite material, However, there is still no general agreement as to how this toughness should be characterized, or how it might be used in the design of structures containing HPFRCCs. In this paper, therefore, we focus on test techniques for measuring flexural toughness. For mechanical properties, HPFRCCs can be tested in the same way as fiber reinforced concrete(FRC). Both the significance and the limitations of somewhat different national and industrial standards of FRC are discussed. For flexural toughness, with depend on the presence of fibers, new test methods was developed and verified. We also suggest evaluation method of tensile toughness indices using the moment curvature relationship in flexural tests.

  • PDF

Vibration Characteristics of Laminated Composite Beams with Passive Constrained Layer Damping (수동 구속감쇠층을 갖는 복합적층보의 진동특성)

  • Kang, Young-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.964-969
    • /
    • 2002
  • The flexural vibration of laminated composite beams with passive constrained layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of Iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations.

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.

Development of an analytical method for optimum design of reinforced concrete beams considering both flexural and shear effects

  • Zivari, Ahmad;Habibi, Alireza;Khaledy, Nima
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Optimization is an important subject which is widely used in engineering problems. In this paper, an analytical method is developed for optimum design of reinforced concrete beams considering both flexural and shear effects. A closed-form formulation is derived for optimal height and rebar of beams. The total material cost of steel and concrete is considered as the objective function which is minimized during the optimization process. The ultimate flexural and shear capacities of the beam are considered as the main constraints. The ultimate limit state is considered for deriving the relations for flexural capacity of the beam. The design requirements are considered according to the item 9 of the Iranian National Building. Analytical formulas and some curves are proposed to be used for optimum design of RC beams. The proposed method can be used to perform the optimization of RC beams without the need of any prior knowledge in optimization. Also, the results of the studied numerical example show that the proposed method results in a better design comparing with the other methods.

Flexural capacity evaluation of hybrid composite beam using high strength steel (고강도강재를 적용한 하이브리드 합성보의 휨성능 평가)

  • Kim, Dae-Hee;Lee, Kyung-Koo;Kim, Young-Gi;Min, Kyung-Cheol;Byeon, Tae-Woo;Joo, Eun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.146-147
    • /
    • 2022
  • Exposed composite beams composed of H-beams and concrete slabs are generally used in building structures because of their excellent economics and flexural strength. However, deep beams used under large load often make difficulties in construction. In this study, an exposed composite beam with high strength steel (SM460) used in the bottom flange of built-up H-shaped beam, so-called S-Beam, was proposed in order to reduce beam depth. And its positive and negative flexural strengths were experimentally evaluated. The test results showed that S-Beam has excellent flexural strength and ductility.

  • PDF

Side-NSM composite technique for flexural strengthening of RC beams

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Saiful Islam, A.B.M.;Salam, Md. Abdus;Kim, Hung Mo
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.439-448
    • /
    • 2017
  • Reinforced concrete (RC) infrastructures often require strengthening due to error in design, degradation of materials properties after prolong utilization and increases load carrying capacity persuaded by new use of the structures. For this purpose, a newly proposed Side Near Surface Mounted (SNSM) composite technique was used for flexural strengthening of RC beam specimens. Analytical and non-linear finite element modeling (FEM) using ABAQUS were performed to predict the flexural performance of RC specimens strengthened with S-NSM using steel bars as a strengthening reinforcement. RC beams with various SNSM reinforcement ratios were tested for flexural performance using four-point bending under monotonic loading condition. Results showed significantly increase the yield and ultimate strengths up to 140% and 144% respectively and improved failure modes. The flexural response, such as failure load, mode of failure, yield load, ultimate load, deflection, strain, cracks characteristic and ductility of the beams were compared with those predicted results. The strengthened RC beam specimens showed good agreement of predicted flexural behavior with the experimental outcomes.

Flexural Strength of cold-formed steel built-up composite beams with rectangular compression flanges

  • Dar, M. Adil;Subramanian, N.;Dar, Dawood A.;Dar, A.R.;Anbarasu, M.;Lim, James B.P.;Mahjoubi, Soroush
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.171-188
    • /
    • 2020
  • The past research on cold-formed steel (CFS) flexural members have proved that rectangular hollow flanged sections perform better than conventional I-sections due to their higher torsional rigidity over the later ones. However, CFS members are vulnerable to local buckling, substantially due to their thin-walled features. The use of packing, such as firmly connected timber planks, to the flanges of conventional CFS lipped I-sections can drastically improve their flexural performance as well as structural efficiency. Whilst several CFS composites have been developed so far, only limited packing materials have been tried. This paper presents a series of tests carried out on different rectangular hollow compression flanged sections with innovative packing materials. Four-point flexural tests were carried out to assess the flexural capacity, failure modes and deformed shapes of the CFS composite beam specimens. The geometric imperfections were measured and reported. The North American Specifications and Indian Standard for cold-formed steel structures were used to compare the design strengths of the experimental specimen. The test results indicate clearly that CFS rectangular 'compression' flanged composite beams perform significantly better than the conventional rectangular hollow flanged CFS sections.

Flexural Performance of RC Beams Strengthened with NSM-GFRP Exposed to High Temperature (GFRP 표면매립공법으로 보강된 RC보의 고온노출 후 휨 성능)

  • Kim, Hee-Seung;Lee, Hye-Hak;Choi, Kyoung-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.35-42
    • /
    • 2018
  • This study evaluated the fire resisting capacity and post-fire serviceability of the concrete beams retrofitted by near surface mounted method(NSM) using GFRP plates. Main parameters in the test are grout materials and fire exposure. For the test, two types of grout materials between concrete substrate and GFRP plate were used; flame resisting epoxy and filling mortar. Four RC beam specimens were made and two of them were exposed to fire according to real scale fire curve proposed KS F 2257. After the fire exposure test, flexural test were performed to investigate the flexural performance of concrete beams including strength and deformation. From the test results, it was found that the beam retrofitted by NSM-GFRP presented higher flexural strength than that of the beam without retrofit, which indicates NSM-GFRP retrofit technologies is effective to maintain flexural strength even after fire exposure. In addition, the specimens grouted by epoxy showed good performance in strength but bad performance in ductility.