• 제목/요약/키워드: Flexible surface

검색결과 905건 처리시간 0.03초

유연성 기판위에 스퍼터링 방법으로 증착한 CdS 박막의 전기적 특성 및 신뢰성 평가 (Electrical Properties and Reliability of CdS Thin Film Deposited by R.F. Sputtering)

  • 허성기;황미나;안준구;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.26-26
    • /
    • 2010
  • Cadmium sulfide (CdS) thin film for flexible optical device applications were prepared at $H_2(Ar+H_2)$ flow ratios on polyethersulfon(PES) flexible polymer substrates at room temperature by radio frequency magnetron sputtering technique. The CdS thin films deposited at room temperature showed a (002) preferred orientation and the smooth surface morphologies. Films deposited at a hydrogen flow ratio of 25% exhibited a photo- and dark-sheet resistance of about 50 and $2.7{\times}10^5{\Omega}$/square, respectively. From the result of the bending test, CdS films exhibit a strong adhesion with the PES polymer substrates and the $Al_2O_3$ passivation layer deposited on the CdS films only shows an increase of the resistance of 8.4% after exposure for 120 h in air atmosphere.

  • PDF

적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작 (Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing)

  • 우상구;이인환;김호찬;이경창;조해용
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition

  • Choi, HongKyw;Jeong, Hu Young;Lee, Dae-Sik;Choi, Choon-Gi;Choi, Sung-Yool
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.186-189
    • /
    • 2013
  • We report a highly sensitive $NO_2$ gas sensor based on multi-layer graphene (MLG) films synthesized by a chemical vapor deposition method on a microheater-embedded flexible substrate. The MLG could detect low-concentration $NO_2$ even at sub-ppm (<200 ppb) levels. It also exhibited a high resistance change of ~6% when it was exposed to 1 ppm $NO_2$ gas at room temperature for 1 min. The exceptionally high sensitivity could be attributed to the large number of $NO_2$ molecule adsorption sites on the MLG due to its a large surface area and various defect-sites, and to the high mobility of carriers transferred between the MLG films and the adsorbed gas molecules. Although desorption of the $NO_2$ molecules was slow, it could be enhanced by an additional annealing process using an embedded Au microheater. The outstanding mechanical flexibility of the graphene film ensures the stable sensing response of the device under extreme bending stress. Our large-scale and easily reproducible MLG films can provide a proof-of-concept for future flexible $NO_2$ gas sensor devices.

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • 제4권4호
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.

Nonvolatile Flexible Bistable Organic Memory (BOM) Device with Au nanoparticles (NPs) embedded in a Conducting poly N-vinylcarbazole (PVK) Colloids Hybrid

  • Son, Dong-Ick;Kwon, Byoung-Wook;Park, Dong-Hee;Yang, Jeong-Do;Choi, Won-Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.440-440
    • /
    • 2011
  • We report on the non-volatile memory characteristics of a bistable organic memory (BOM) device with Au nanoparticles (NPs) embedded in a conducting poly N-vinylcarbazole (PVK) colloids hybrid layer deposited on flexible polyethylene terephthalate (PET) substrates. Transmission electron microscopy (TEM) images show the Au nanoparticles distributed isotropically around the surface of a PVK colloid. The average induced charge on Au nanoparticles, estimated using the C-V hysteresis curve, was large, as much as 5 holes/NP at a sweeping voltage of ${\pm}3$ V. The maximum ON/OFF ratio of the current bistability in the BOM devices was as large as $1{\times}105$. The cycling endurance tests of the ON/OFF switching exhibited a high endurance of above $1.5{\times}105$ cycles and a high ON/OFF ratio of ~105 could be achieved consistently even after quite a long retention time of more than $1{\times}106$ s.

  • PDF

반도체형 고분자를 이용한 태양전지섬유 (A solar Cell Fiber using Semi-conductive Polymers)

  • 송준형;김주용
    • 한국염색가공학회지
    • /
    • 제20권1호
    • /
    • pp.44-47
    • /
    • 2008
  • Organic semi-conductive materials have characteristics such as the advantages of easy formability, low-cost and diversity along with moderate semi-conductive properties. In this paper, we developed a flexible organic-inorganic hybrid solar cell fiber. First, we made a solar cell on the glass and attached the solar cell on the glass fiber similarly. In the latter case, thermal deposition method was employed in order to effectively apply ITO onto fiber surface. The amount of ITO was controlled by varying the temperature from 25, 150 to $300^{\circ}C$. Optimum result was obtained at $150^{\circ}C$ where maximize the deposition amount without significant decomposition of ITO. Despite of maximum open circuit voltage of 0.39V, the resulting current was quite unstable and weak, limiting realistic applications. It was, however, concluded that the flexible solar cell fiber developed showed a possibility of low-weight application from functional clothing for military to space suit mainly due to flexibility and thus wear ability.

Highly Flexible Dye-sensitized Solar Cell Prepared on Single Metal Mesh

  • Yun, Min Ju;Cha, Seung I.;Seo, Seon Hee;Lee, Dong Y.
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.79-83
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) are applied in the emerging fields of building integrated photovoltaic and electronics integrated photovoltaic like small portable power sources as demands are increased with characteristic advantages. Highly flexible dye-sensitized solar cells (DSSCs) prepared on single stainless steel mesh were proposed in this paper. Single mesh DSSCs structure utilizing the spraying the chopped glass paper on the surface treated stainless steel mesh for integrating the space element and the electrode components, counter electrode component and photoelectrode component were coated on each side of the single mesh. The fabricated single mesh DSSCs showed the energy-conversion efficiency 0.50% which show highly bendable ability. The new single mesh DSSCs may have potential applications as highly bendable solar cells to overcome the limitations of TCO-based DSSCs.

촉각센서를 갖는 인간형 로봇손의 개발: SKKU Hand II (Development of Anthropomorphic Robot Hand with Tactile Sensor: SKKU Hand II)

  • 최병준;이상헌;강성철;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.594-599
    • /
    • 2006
  • In this paper an anthropomorphic robot hand called SKKU Hand IIl is presented, which has a miniaturized fingertip tactile sensor. The thumb is designed as one part of the palm and multiplies the mobility of the palm. The fingertip tactile sensor, based on polyvinylidene fluoride (PVDF) and pressure variable resistor ink, is physically flexible enough to be deformed into any three-dimensional geometry. In order to detect incipient slip, a PVDF strip is arranged along the direction normal to the surface of the finger of the robot hand. Also, a thin flexible sensor to sense the static force as well as the contact location is fabricated into an arrayed type using pressure variable resistor ink. The driving circuits and the tactile sensing systems for the SKKU Hand II are embedded in the hand. Each driving circuit communicates with others using CAN protocol. SKKU Hand II is manufactured and its feasibility is validated through preliminary experiments.

Compact and Flexible Monopole Antenna for Ultra-Wideband Applications Deploying Fractal Geometry

  • Geetha, G;Palaniswamy, Sandeep Kumar;Alsath, M. Gulam Nabi;Kanagasabai, Malathi;Rao, T. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.400-405
    • /
    • 2018
  • This paper presents a compact ultra-wideband (UWB) flexible monopole antenna design on a paper substrate. The proposed antenna is made of iterations of a circular slot inside an octagonal metallic patch. This fractal-based geometry has been deployed to achieve compactness along with improved bandwidth, measured reflection coefficient -10 dB bandwidth ranging from 2.7 to 15.8 GHz. The overall size of the antenna is $26mm{\times}19mm{\times}0.5mm$, which makes it a compact one. The substrate used is paper and the main features like environment friendly, flexibility, green electronics applications and low cost of fabrication are the key factors for the proposed antenna. The aforementioned UWB prototype is suitable for many wireless communication systems such as WiMAX, WiFi, RFID and WSN applications. Antenna has been tested for the effect of bending by placing it over a curved surface of a very small radius of 10 mm.

Development of Stretchable PZT/PDMS Nanocomposite Film with CNT Electrode

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.400-403
    • /
    • 2013
  • The piezoelectric composite film of ferroelectric PZT ceramic ($PbZr_xTi_{1-x}O_3$) and polymer (PDMS, Polydimethylsiloxane) was prepared to improve the flexibility of piezoelectric material. The bar coating method was applied to fabricate flexible nanocomposite film with large surface area by low cost process. In the case of using metal electrode on the composite film, although there is no problem by bending process, the electrode is usually broken away from the film by stretching process. However, the well-attached, flexible CNT electrode on PZT/PDMS film improved flexibility, especially stretchability. PZT particles was usually settled down into polymer matrix due to gravity of the weighty particle, so to improve the dispersion of PZT powder in polymer matrix, small amount of additives (CNT powder, Carbon nanotube powder) was physically mixed with the matrix. By stretching the film, an output voltage of PZT(70 wt%)/PDMS with CNT (0.5 wt%) was measured.