• Title/Summary/Keyword: Flexible substrates

Search Result 382, Processing Time 0.039 seconds

Carbon Nanotube (CNT) based Transparent Conductive Films for Display Applications (탄소나노튜브 기반 투명전도성 필름 및 이의 응용)

  • Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.77-77
    • /
    • 2007
  • The development of next generation displays such as flexible display is a major challenge. Most materials and processes in current flat panel display industry cannot be transferred to flexible substrates. Typically, indium tin oxide (ITO) thin films are brittle and need to be deposited at high temperature to achieve an optimal opto-electrical property, therefore ITO films cannot be used as a flexible electrode. Up to date, many alternative materials to ITO have been proposed such as conductive polymers, nanometals, solution deposited transparent conductive oxide(TCO) and carbon nanotubes(CNTs). CNT based transparent conductive films are fabricated on glass and polymer substrates. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders. This talk will present the current studies, opto-electrical properties, design criteria and its applications for CNT-based transparent conductive films.

  • PDF

Backplane Technologies for Flexible Display (플렉시블 디스플레이 백플레인 기술)

  • Lee, Yong Uk
    • Vacuum Magazine
    • /
    • v.1 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • Display is a key component in electronic devices. OLED is growing very fast recently due to the explosion of the smart phone market although still LCD is the dominating display technology in the display market at the moment. Also needs for the large area and high resolution TVs and flexible displays are increasing these days. Especially flexible display is expected to be one of the key technologies in mobile devices requiring small device size and large display size. Contrary to the conventional displays, flexible display requires organic materials for the substrate, the active driving element and also for the display element. Plastic film as a substrate, organic semiconductor as an active component of the transistor and organic light emitting materials or electronic paper as a display element are studied actively. In this article, mainly backplane technologies such as substrates and the transistor materials for flexible display will be introduced.

Graphene Field-effect Transistors on Flexible Substrates

  • So, Hye-Mi;Kwon, Jin-Hyeong;Chang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.578-578
    • /
    • 2012
  • Graphene, a flat one-atom-thick two-dimensional layer of carbon atoms, is considered to be a promising candidate for nanoelectronics due to its exceptional electronic properties. Most of all, future nanoelectronics such as flexible displays and artificial electronic skins require low cost manufacturing process on flexible substrate to be integrated with high resolutions on large area. The solution based printing process can be applicable on plastic substrate at low temperature and also adequate for fabrication of electronics on large-area. The combination of printed electronics and graphene has allowed for the development of a variety of flexible electronic devices. As the first step of the study, we prepared the gate electrodes by printing onto the gate dielectric layer on PET substrate. We showed the performance of graphene field-effect transistor with electrohydrodynamic (EHD) inkjet-printed Ag gate electrodes.

  • PDF

Analysis of Surface Characteristics for Clad Thin Film Materials (극박형 복합재료 필름의 표면 물성 분석에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.62-65
    • /
    • 2018
  • In the era of the 4th Industrial Revolution, IoT products of various and specialized fields are being developed and produced. Especially, the generation of the artificial intelligence, robotic technology Multilayer substrates and packaging technologies in the notebook, mobile device, display and semiconductor component industries are demanding the need for flexible materials along with miniaturization and thinning. To do this, this work use FCCL (Flexible Copper Clad Laminate), which is a flexible printed circuit board (PCB), to implement FPCB (Flexible PCB), COF (Chip on Film) Use is known to be essential. In this paper, I propose a transfer device which prevents the occurrence of scratches by analyzing the mechanism of wrinkle and scratch mechanism during the transfer process of thin film material in which the thickness increases while continuously moving in air or solution.

Electro-Optical Performances of Flexible Liquid Crystal Display on Twisted Nematic Mode according to Cell Gap (셀갭 변화에 따른 Flexible 기판 TN-LCD의 전기광학특성)

  • Kang, Hee-Jin;Hwang, Jeoung-Yeon;Lee, Whee-Won;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.289-290
    • /
    • 2005
  • We have investigated the electro-optical (EO) performances of the flexible liquid crystal display (LCD) on twisted nematic (TN) mode according to variation of cell gap in comparison with glass LCD. There were four kinds of cells which were having cell gaps of 3$\mu$m, 4$\mu$m and 5$\mu$m, especially the lowest 2$\mu$m on flexible and glass substrates separately. The EO performances of the flexible cells on the rubbed potyimide (PI) were almost the same those of glass cells. The response time of flexible cells was shorter than that of glass cells but the alignment of liquid crystal (LC) of flexible cells was weaker than that of glass cells. The residual DC of flexible cells was on the increase like that of glass cells in compliance with lowering cell gap.

  • PDF

Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process (Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가)

  • Kim, Young-Su;Kang, Min-Ho;Nam, Dong-Ho;Choi, Kang-Il;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.821-825
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO TFTs having different channel thicknesses deposited at low temperature. The ZnO films were deposited as active channel layer on $Si_3N_4/Ti/SiO_2/p-Si$ substrates by RF magnetron sputtering at $100^{\circ}C$ without additional annealing. Also, the ZnO thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film was deposited as gate insulator by PE-CVD at $150^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method. The fabricated devices have different threshold slop, field effect mobility and subthreshold slop according to channel thickness. This characteristics are related with ZnO crystal properties analyzed with XRD and SPM. Electrical characteristics of 60 nm ZnO TFT (W/L = $20\;{\mu}m/20\;{\mu}m$) exhibited a field-effect mobility of $0.26\;cm^2/Vs$, a threshold voltage of 8.3 V, a subthreshold slop of 2.2 V/decade, and a $I_{ON/OFF}$ ratio of $7.5\times10^2$.

Linear Ion Beam Applications for Roll-to-Roll Metal Thin Film Coatings on PET Substrates

  • Lee, Seunghun;Kim, Do-Geun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.162-166
    • /
    • 2015
  • Linear ion beams have been introduced for the ion beam treatments of flexible substrates in roll-to-roll web coating systems. Anode layer linear ion sources (300 mm width) were used to make the linear ion beams. Oxygen ion beams having an ion energy from 200 eV to 800 eV used for the adhesion improvement of Cu thin films on PET substrates. The Cu thin films deposited by a conventional magnetron sputtering on the oxygen ion beam treated PET substrates showed Class 5 adhesion defined by ASTM D3359-97 (tape test). Argon ion beams with 1~3 keV used for the ion beam sputtering deposition process, which aims to control the initial layer before the magnetron sputtering deposition. When the discharge power of the linear ion source is 1.2 kW, static deposition rate of Cu and Ni were 7.4 and $3.5{\AA}/sec$, respectively.