• Title/Summary/Keyword: Flexible structure

Search Result 1,635, Processing Time 0.026 seconds

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(II) : Application (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(II) : 응용)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.176-184
    • /
    • 2000
  • Recently, it becomes a very important issue to consider the mechanical systems such as high-speed vehicle and railway train moving on a flexible beam structure. Using general approach proposed in the first part of this paper, it tis possible to predict planar motion of constrained mechanical system and elastic structure with various kinds of foundation supporting condition. Combined differential-algebraic equations of motion derived from both multibody dynamics theory and Finite Element Method can be analyzed numerically using generalized coordinate partitioning algorithm. To verify the validity of this approach, results from simply supported elastic beam subjected to a moving load are compared with exact solution from a reference. Finally, parameter study is conducted for a moving vehicle model on a simply supported 3-span bridge.

  • PDF

Study on the Water-Vapor Permeation through the Al Layer on Polymer Substrate (폴리머 기판에 형성한 알루미늄 보호막의 수분침투 특성 연구)

  • Choi, Young-Jun;Ha, Sang-Hoon;Park, Ki-Jung;Choe, Youngsun;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.873-880
    • /
    • 2009
  • Water-vapor permeation through metallic barriers deposited on polymer substrates has been an important technological issue because the performance of the barrier is critical to the reliability of flexible organic devices. For the development of long-lifetime flexible organic devices, two different sets of samples were designed and demonstrated from the viewpoint of the water-vapor transmission rate (WVTR). Aluminum (Al) and polyethylene terephthalate (PET) were chosen for the barrier layer and the polymer substrate, respectively. Two stacking structures, a single-layer (Al/PET) structure and a double-layer (Al/PET/Al) structure, were used for the WVTR measurement. For the single-layer structure, the WVTR decreases as the thickness of the barrier layer increases. Compared to the single-layer sample, the double-layer sample showed superior WVTR performance (by nearly three times) when the total thickness of the Al barrier was greater than 100 nm.

Usefulness Verification for Flexible Stretch Forming Process using finite Element Method (유한요소법을 이용한 가변 스트레치 성형공정의 적합성 검증)

  • Seo, Y.H.;Heo, S.C.;Park, J.W.;Song, W.J.;Ku, T.W;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.241-244
    • /
    • 2009
  • This paper deals with a usefulness verification of stretch forming process using flexible die. The stretch forming method is widely used in aircraft and high-speed train industries for manufacturing of skin structure, which is made of sheet metal. A great number of solid dies are originally used and developed for specific shapes with respect to different curvature radii of the skin structures. Accordingly, flexible stretch forming process is proposed in this study. It replaces the conventional solid dies with a set of height adjustable discrete punches. A usefulness of the flexible die is verified through extensive numerical simulations of the stretch forming process for simply curved sheet plate. The elastic recovery is considered and formability evaluations are conducted through a comparison of symmetry plane configurations.

  • PDF

The Vibration Control of Flexible Manipulators using Adaptive Input Shaper (적응 입력다듬기를 이용한 유연한 조작기의 진동제어)

  • 신효필;정영무;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.220-227
    • /
    • 1999
  • The position control accuracy of a robot arm is significantly deteriorated when a long slender arm robot is operated at a high speed. In this case, the robot arm needs to be modeled as a flexible structure, not a rigid one, and its control system needs to be designed with its elastic modes taken into account. In this paper, the vibration control scheme of a one-link flexible manipulator using adaptive input shaper in conjunction with PID controller is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and an accelerometer. On-line identification of the vibration mode is done using the pruned decimation-in-time FFT algorithm to estimate the parameter of the input shaper. Experimental results of the flexible manipulator with a PID controller and input shaper are provided to show the effectiveness of the advocated controllers.

  • PDF

Explicit time integration algorithm for fully flexible cell simulation (외연적 적분 기법을 적용한 Fully Flexible Cell 분자 동영학 시뮬레이션)

  • Park Shi-Dong;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.389-394
    • /
    • 2006
  • Fully flexible cell preserves Hamiltonian in structure, so the symplectic time integrator is applied to the equations of motion. Primarily, generalized leapfrog time integration (GLF) is applicable, but the equations of motion by GLF have some of implicit formulas. The implicit formulas give rise to a complicate calculation for coding and need an iteration process. In this paper, the time integration formulas are obtained for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term, so the simple and completely explicit recursion formula was obtained. The explicit formulas are easy to implementation for coding and may be reduced the integration time because they are not need iteration process. We are going to compare the resulting splitting time integration with the implicit generalized leapfrog time integration.

  • PDF

Flutter Analysis of Flexible Wing for Electric Powered UAV (전기동력무인기 유연날개 플러터 해석)

  • Lee, Sang-Wook;Shin, Jeong Woo;Choi, Yong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.189-192
    • /
    • 2014
  • Recently, development of electric powered UAV for high altitude and long endurance mission has been conducted worldwide. Long endurance requirement necessitates high lift over drag (L/D) aerodynamic characteristics and lightweight structures, leading to highly flexible wings with high aspect ratio. These highly flexible wings increase the danger of catastrophic aircraft failure due to flutter, which is a dynamic aeroelastic instability occurring from the interaction of aerodynamic, inertial, and elastic forces acting on the aircraft flying through the air. In this paper, flexible wing for electric powered UAV whose skin is fabricated using mylar film for lightweight design is briefly explained. In addition, flutter analysis procedures and results for the flexible wing in order to substantiate the aeroelastic stability requirements are presented.

  • PDF

Exact Reshaping of Motor Dynamics in Flexible-Joint Robot using Integral Manifold Feedback Control (유연관절로봇의 모터 동역학을 정확하게 재설정하기 위한 적분매니폴드 피드백제어 개발)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • In this paper, an exact reshaping method for the motor dynamics of a flexible-joint robot is proposed using an integral manifold approach. Obtaining the exact model for both motor-side and link-side dynamics of a flexible-joint robot is difficult due to its under-actuated nature and complex dynamics. Despite the simple structure of the motor-side dynamics, they are difficult to model accurately for a flexible-joint robot due to motor disturbances, especially when speed reducers such as harmonic drives are installed. An integral manifold feedback control (IMFC) is proposed to reshape the motor dynamics. Based on the integral manifold approach, it is theoretically proved that the IMFC reshapes motor dynamics exactly even with bounded disturbances such as motor friction. The performance of the proposed IMFC is verified experimentally using a single degree-of-freedom flexible-joint robot under gravity conditions.

Development flexible force sensor using fiber bragg grating (광섬유 브래그 격자를 이용한 촉각센서용 유연 단위 힘 센서 개발)

  • Heo, Jin-Seok;Kim, Man-Sub;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • This paper describes the flexible force sensor using fiber Bragg grating (FBG) and silicone rubber for the tactile sensation to detect the distributed normal force. The newly designed FBG flexible force has simple structure and can be easily multiplexed with simple wiring compared with the other electric mechanical sensors. We designed the flexible silicone rubber transducer and found the optimum embedding position of FBG in the transducer using the finite element analysis. This flexible force sensor has good performance and is immunity to the electromagnetic field compared with any other kinds of small force sensors for tactile sensation.

Slewing maneuver control of flexible space structure using adaptive CGT

  • Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.47-50
    • /
    • 1995
  • This paper concerns an adaptive control scheme which is an extension of the simplified adaptive control. Originally, the SAC approach was developed based on the command generator tracker (CGT) theory for perfect model tracking. An attractive point of the SAC is that a control input can be synthesized without any prior knowledge about plant structure. However, a feedforward dynamic compensator of the CGT is removed from the basic structure of the SAC. This deletion of the compensator makes perfect model tracking difficult against even a step input. In this paper, an adaptive control system is redesigned to achieve perfect model tracking for as long as possible by reviving the dynamic compensator of the CGT. The proposed method is applied to slewing control of a flexible space structure and compared to the SAC responses.

  • PDF

Damping Effects of a Flexible Structure Interacting with Surrounding Acoustic Fluid (주변 음장과 연동하는 탄성 구조체의 감쇠 효과)

  • Lee, Moon-Seok;Park, Youn-Sik;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.718-724
    • /
    • 2008
  • A flexible structure submerged in acoustic fluid is affected by its surrounding fluid. In this case, the coupling effects between structures and surrounding fluid have an effect on the submerged structure as external force and change impedance of acoustic domain. Therefore, the coupling effects by its surrounding fluid complicatedly change the characteristics of a submerged structure such as natural frequencies and damping coefficients. In this paper, using the analytic modal equation of a spherical shell surrounded by water and air, the complex changes of damping coefficients and natural frequencies of submerged structures are studied for various external acoustic fluid and structures.