• 제목/요약/키워드: Flexible simulation modeling

검색결과 168건 처리시간 0.038초

FMS 최적설계를 위한 시뮬레이션 지원 시스템 (A Simulation Support System for Optimal Design of FMS)

  • 이영해;김성식
    • 산업공학
    • /
    • 제1권2호
    • /
    • pp.25-34
    • /
    • 1988
  • Simulation is known to be a valuable tool for design and operation of Flexible Manufacturing Systems(FMSs) under study. However, in order for simulation to be useful, lots of knowledges about the behavior of system to be designed, statistics for output analysis, modeling techniques and a specific simulation language are required by the simulationist. In this paper a way to build simulation support system for nonexperts at simulation will be described and a simulation support system for FMS design and operation developed by the authors will be demonstrated.

  • PDF

계층의 구조를 갖는 시뮬레이션 모델에 있어서 단계적 접근을 위한 모델연결 방법론과 그 적용 예 (Model Coupling Technique for Level Access in Hierarchical Simulation Models and Its Applications)

  • 조대호
    • 한국시뮬레이션학회논문지
    • /
    • 제5권2호
    • /
    • pp.25-40
    • /
    • 1996
  • Modeling of systems for intensive knowledge-based processing requires a modeling methodology that makes efficient access to the information in huge data base models. The proposed level access mothodology is a modeling approach applicable to systems where data is stored in a hierarchical and modular modules of active memory cells(processor/memory pairs). It significantly reduces the effort required to create discrete event simulation models constructed in hierarchical, modular fashion for above application. Level access mothodology achieves parallel access to models within the modular, hierarchical modules(clusters) by broadcasting the desired operations(e.g. querying information, storing data and so on) to all the cells below a certain desired hierarchical level. Level access methodology exploits the capabilities of object-oriented programming to provide a flexible communication paradigm that combines port-to-port coupling with name-directed massaging. Several examples are given to illustrate the utility of the methodology.

  • PDF

동역학 S/W와 연계한 회전체 제어의 모델링에 관한 연구 (A study on the Modeling for Rotors Control with Dynamics Analysis S/W)

  • 이원창;김성원;김재실;최헌오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.906-909
    • /
    • 2005
  • This study provides the method to build the rotor system model using dynamic analysis software. also, it introduces the traditional methods of the rotor system modeling and informs the each merits and demerits. We will make up the flexible system of rotor system model with ADAMS, multi-body dynamics S/W, in order to develop dynamics model and get the response of plant model near to real model through connection the SIMULINK of MATLAB. We will develop the computing dynamics-controling model possible controlled simulation similar to a real model with controlling the plant model.

  • PDF

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.

유연모드를 가진 인공위성의 자세제어를 위한 동역학 모델링 및 반작용휠 제어기 설계 (DYNAMIC MODELING AND REACTION WHEEL CONTROLLER DESIGN FOR FLEXIBLE SATELLITE AOCS)

  • 우병삼;채장수
    • Journal of Astronomy and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.386-394
    • /
    • 1997
  • 본 연구에서는 유연모드를 고려한 위성체 모델링 방법들을 소개하고, 이에 따라 3축 안정화 위성의 유연모드를 모델링하였다. 이 모델을 강체에 대해 설계되었던 반작용휠을 이용한 자세제어루프에 적용하였다. 본 연구에서는 유한요소모델이 완성되기 전 단계에서 집합모드모델 중 전역모드모델을 이용하는 것을 제안하였고, 이를 유한요소법을 이용하여 계산된 모델과 제어기 필터 설계의 관점에서 비교하였다. 새로운 유연모드가 적용됨에 따라 제어기 요구조건을 만족시키기 위한 필터가 필요하여 반작용휠의 모터제어기 루프와 축제어기 루프에 각각 1차 필터를 설계하여 추가하였다. 제어루프 설계 및 시뮬레이션을 위해 MATLAB/Simulink를 사용하였다.

  • PDF

Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests

  • Liu, Donghai;Yang, Jiaqi
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.189-206
    • /
    • 2020
  • The accurate modeling of boundary conditions is important in simulations of the discrete element method (DEM) and can affect the numerical results significantly. In conventional triaxial compression (CTC) tests, the specimens are wrapped by flexible membranes allowing to deform freely. To accurately model the boundary conditions of CTC, new flexible boundary algorithms for 2D and 3D DEM simulations are proposed. The new algorithms are computationally efficient and easy to implement. Moreover, both horizontal and vertical component of confining pressure are considered in the 2D and 3D algorithms, which can ensure that the directions of confining pressure are always perpendicular to the specimen surfaces. Furthermore, the boundaries are continuous and closed in the new algorithms, which can prevent the escape of particles from the specimens. The effectiveness of the proposed algorithms is validated by biaxial and triaxial simulations of granular materials. The results show that the algorithms allow the boundaries to deform non-uniformly on the premise of maintaining high control accuracy of confining pressure. Meanwhile, the influences of different lateral boundary conditions on the numerical results are discussed. It is indicated that the flexible boundary is more appropriate for the models with large strain or significant localization than rigid boundary.

수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구 (A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane)

  • 김종대;오석형;김기호;오재윤
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.

Simulation and Experimental Methods for Media Transport System: Part I, Three-Dimensional Sheet Modeling Using Relative Coordinate

  • Cho, Heui-Je;Bae, Dea-Sung;Choi, Jin-Hwan;Lee, Soon-Geul;Rhim, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.305-311
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

유연한 로봇팔의 선단 위치 제어를 위한 강인한 제어기의 설계 (Robust Controller Design for Flexible Robot Arm Manipulator)

  • 신봉철;이형기;최연욱;안영주
    • 융합신호처리학회논문지
    • /
    • 제3권2호
    • /
    • pp.76-82
    • /
    • 2002
  • 본 연구는 유연한 로봇팔의 선단 위치를 제어하기 위한 강인한 제어기의 설계하고 이것의 효과를 실험을 통하여 확인하는 데 있다. 이를 위해 먼저 유연한 로봇팔의 모델링을 Lagrange 방정식을 이용하여 수행하여 시스템의 수식모델을 구한 뒤, 이 모델을 기본으로 하는 강인한 제어기의 설계를 LMI(Linear Matrix Inequality)을 적용한 H$_{\infty}$이론을 도입하여 수행한다. 이 과정에서 로봇팔의 선단부하 변경으로 인한 시스템 파라미터의 변동을 플랜트가 가지는 불확실성 영역으로 간주하여 이를 설계에 적극적으로 반영함으로서 결과적으로 플랜트의 파라미터 변동에 강인한 제어기를 구현하고 이것의 유효성을 실험을 통하여 확인한다. .실험을 통하여 확인한다. .

  • PDF