• Title/Summary/Keyword: Flexible material

Search Result 1,045, Processing Time 0.029 seconds

Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane (나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용)

  • Eom, Seong Un;Kang, Seok Hee;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.635-643
    • /
    • 2016
  • Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

The Flexible Characteristic of Reversible and Robust Nanohair Fastener

  • Park, Seung-Ho;Yoon, Young-Seok;Lee, Dong-Woo;Lee, Dong-Ik;You, Kyoung-Hwan;Pang, Chang-Hyun;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.432-432
    • /
    • 2011
  • Dry adhesion caused by Nanoscale contact comes up to important scientific issue. Herein, we introduce bendable nanohairy locking fastener system with high shear strength and mechanically flexible backing. The polymeric patches like velcro are composed of an array of straight nanohairs with 100 nm diameter and $1{\mu}m$ height. To fabricate high aspect vertical nanohairs, we used UV molding method with appropriately flexible and rigid polyurethane acrylate material on PET substrate. Two identical nanohairy patches are easily merged and locked each other induced by van der Waals force. Because nanohairs can be arrayed with high density ${\sim}4{\times}10^8/cm^2$, we can obtain high shear adhesion force on flat surface (~22 N/$cm^2$). Furthermore, we can obtian nanohairy locking system with maximum shear adhesion ~48 N/$cm^2$ of curved surface due to flexibility of PET substrate. We confirm the tendency that shear adhesion force increases, as radius of curvature increases.

  • PDF

Technology Trend of Sputtering Type FCCL for Display Material (Display 소재용 Sputtering Type FCCL의 기술 동향)

  • Lee, Man-Hyeong;Ryu, Han-Gwon;Kim, Yeong-Tae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.33-42
    • /
    • 2015
  • 오늘날 연성회로기판(FCCL : Flexible Copper Clad Laminate)은 디스플레이, 스마트폰, 자동차, 항공, 의료 기기, 산업용 컨트롤 기기 등 거의 모든 고급 전자 제품들에 사용되고 있다. 특히 디스플레이 분야에서는 뛰어난 연성과 내구성을 바탕으로 경박단소화에 유리할 뿐만 아니라 구동부에 적용이 가능한 장점 등으로 그 적용처가 점점 늘어나고 있는 추세이다. 이 가운데서도 LCD와 OLED의 구동소자(Display Driver IC)를 장착하는 COF(Chip on Film)는 대표적인 연성회로기판(FCCL) 적용 부품으로서, 최근 인기를 끌고 있는 디스플레이의 제로-베젤(Zero-bezel)을 가능케 하는 핵심 부품이다. COF용 연성회로기판(FCCL) 소재로는 우수한 평탄도, 파인피치(Fine-pitch)구현성, 내굴곡성, 광투과성 등을 보유하고 있는 Sputtering Type FCCL이 사용되고 있다. 특히 최근 Display 분야의 화두가 되고 있는 POLED(Plastic-OLED) 패널을 장착한 Flexible Mobile 디스플레이의 경우, 기존의 COG(Chip on Glass) 접합방식이 아닌 COF 접합방식을 채택하고 있으며, 기존의 단면 COF보다 3배의 고해상도 구현이 가능한 양면 COF를 채택하기에 이르렀다. 기존의 COF 제작공정과 달리 Semi Additive 공정으로 제작되는 양면 COF 시장의 태동으로 양면 연성회로기판(FCCL)의 수요 증가가 예상되는 등 최근 디스플레이 기술 발전은 소재 분야에도 큰 변화를 잉태하고 있다. 이러한 최근 디스플레이 업계의 고해상도, 고속 신호 전송, 슬림화, Flexible 추세에 대응 가능한 최적의 특성을 보유하고 있는 Sputtering Type FCCL을 중심으로 디스플레이의 발전에 대응하는 소재의 기술 개발 동향을 살펴보고자 한다.

  • PDF

Modeling of air cushion vehicle's flexible seals under steady state conditions

  • Zalek, Steven F.;Karr, Dale G.;Jabbarizadeh, Sara;Maki, Kevin J.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • The purpose of this paper is to demonstrate the efficacy of modeling a surface effect ship's air-cushion flexible seal utilizing a two-dimensional beam under steady state conditions. This effort is the initial phase of developing a more complex three-dimensional model of the air-seal-water fluid-structure interaction. The beam model incorporates the seal flexural rigidity and mass with large deformations while assuming linear elastic material response. The hydrodynamic pressure is derived utilizing the OpenFOAM computational fluid dynamic (CFD) solver for a given set of steady-state flow condition. The pressure distribution derived by the CFD solver is compared with the pressure required to deform the seal beam model. The air pressure, flow conditions and seal geometry are obtained from experimental analysis. The experimental data was derived from large-scale experimental tests utilizing a test apparatus of a canonical surface effect ship's flexible seal in a towing tank over a variety of test conditions.

An Efficient Solution for Multibody Dynamics Composed of Flexible Beams (유연한 보로 구성된 다물체 동역학의 효율적인 해법)

  • 이기수;금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2298-2305
    • /
    • 1992
  • To obtain the convenient solution of the multibody dynamic systems composed of flexible beams, linear finite element technique is adopted and the nodal coordinates are interpolated in the global inertia frame. Mass matrix becomes an extremely simple constant matrix and the force vector also becomes extremely simple because Coriolis acceleration and centrifugal force are not required. And the elastic force is also simply computed from the moving frame attached to the material. To solve the global differential algebraic euation. an ODE technique is adopted after Lagrange multiplier is computed by the accelerated iterative technique, and the time demanding procedures such as Newton-Raphson iterations and decomposition of the big matrix are not required. The accuracy of the present solution is checked by a well-known example problem.

Free vibration analysis of tapered FRP transmission poles with flexible joint by finite element method

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.409-424
    • /
    • 2012
  • Since relatively low elasticity modulus of the FRP materials results in lower natural frequencies, it is necessary to study the free vibration of FRP transmission poles. In this paper, the free vibration of tapered FRP transmission poles with thin-walled circular cross-section is investigated by a tapered beam element. To model the flexible joints of the modular poles, a rotational spring model is used. Modal analysis is performed for typical FRP poles with/without joint and they are also modeled by ANSYS commercial finite element software. There is a good correlation between the results of the tapered beam finite element model and those obtained from ANSYS as well as the existing experimental results. The effects of different geometries, material lay-ups, concentrated masses at the pole tip, and joint flexibilities are evaluated. Moreover, it is concluded that using tougher fibres at the inner and outer layers of the cross-section, results in higher natural frequencies, significantly.

Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure

  • Ebrahimi, Saeed;Salahshoor, Esmaeil;Moradi, Shapour
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.691-702
    • /
    • 2017
  • Clearances are essential for the assemblage of mechanisms to allow the relative motion between the joined bodies. This clearance exists due to machining tolerances, wear, material deformations, and imperfections, and it can worsen the mechanism performance when the precision and smoothly-working are intended. Energy is a subject which is less paid attention in the area of clearance. The effect of the clearance on the energy of a flexible slider-crank mechanism is investigated in this paper. A clearance exists in the joint between the slider and the coupler. The contact force model is based on the Lankarani and Nikravesh model and the friction force is calculated using the modified Coulomb's friction law. The hysteresis damping which has been included in the contact force model dissipates energy in clearance joints. The other source for the energy loss is the friction between the journal and the bearing. Initial configuration and crank angular velocity are changed to see their effects on the energy of the system. Energy diagrams are plotted for different coefficients of friction to see its influence. Finally, considering the coupler as a flexible body, the effect of flexibility on the energy of the system is investigated.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

Development of Stretchable PZT/PDMS Nanocomposite Film with CNT Electrode

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.400-403
    • /
    • 2013
  • The piezoelectric composite film of ferroelectric PZT ceramic ($PbZr_xTi_{1-x}O_3$) and polymer (PDMS, Polydimethylsiloxane) was prepared to improve the flexibility of piezoelectric material. The bar coating method was applied to fabricate flexible nanocomposite film with large surface area by low cost process. In the case of using metal electrode on the composite film, although there is no problem by bending process, the electrode is usually broken away from the film by stretching process. However, the well-attached, flexible CNT electrode on PZT/PDMS film improved flexibility, especially stretchability. PZT particles was usually settled down into polymer matrix due to gravity of the weighty particle, so to improve the dispersion of PZT powder in polymer matrix, small amount of additives (CNT powder, Carbon nanotube powder) was physically mixed with the matrix. By stretching the film, an output voltage of PZT(70 wt%)/PDMS with CNT (0.5 wt%) was measured.

A study on elastomer coating technology for continuous gradient conductive surface (연속 구배형 전도성 표면 구현을 위한 탄성중합체 코팅에 관한 연구)

  • La, Moon-Woo;Yoon, Gil-Sang;Park, Sung-Jea
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • Recently, studies on the development of flexible electronic devices by combining flexible materials and a conductor have been actively performed as interest in wearable devices. Especially, carbon nanotubes (CNT) or graphene coating have been used to construct a circuit to induce improvement in flexibility and rigidity. Various technologies have been developed in the surface coating of conductive materials, which are key to the manufacture of flexible electronic devices. Surface coating products with 3D coating and micro-patterns have been proposed through electrospinning, electrification, and 3D printing technologies. As a result of this advanced surface coating technology, there is a growing interest in manufacturing gradient conductive surfaces. Gradient surfaces have the advantage that they are adapted to apply a gentle change or to inspect optimum conditions in a particular region by imparting continuously changing properties. In this study, we propose a manufacturing technique to produce a continuous gradient conductive surface by combining a partial stretching of elastomer and a conductive material coating, and introduce experimental results to confirm its performance.