• Title/Summary/Keyword: Flexible manufacturing technology

Search Result 335, Processing Time 0.034 seconds

Laser Cutting of Flexible Printed Circuit Board in Liquid (연성인쇄회로기판의 액중 레이저 절단)

  • Kim, Teakgu;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.56-62
    • /
    • 2013
  • The laser cutting process which is flexible and rapid usually provides a better result in cutting of flexible printed circuit boards (FPCB). However, circuit-short by the re-deposition of debris from laser ablation or its heat affect zone (HAZ) on the cutting surfaces can be a problem. A laser cutting process of FPCB in the presence of liquid can minimize these negative effects. The temperature distribution of copper and polymer parts of FPCB was analyzed with numerical simulation and the experimental results were presented to evaluate this process. Generally, laser cutting under liquid has advantages of less re-deposition of carbides and less HAZ on the cutting edges. However, bubble generation and laser beam control through the liquid media should be considered carefully to obtain a successful result.

A study on the exit stage quality prediction of flexible disk process using neural network (신경망을 이용한 유연디스크 가공 종단부 품질예측에 관한 연구)

  • Yoo, Song-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.760-767
    • /
    • 2010
  • Even though a flexible disk grinding process was often applied to enhance the product quality, it produced non-flat zone in the beginning and the exit (end) area. Since latter area is susceptible to poor product quality with burn mark, careful analysis is required to cope with such degradation. The flexible disk grinding exit stage was analyzed for workpiece length, wheel speed, depth of cut and feed. The exit stage qualities defined as exit stage ratio and exit stage angle or slope was characterized. A neural network application results reveled that exit stage characteristics was predicted more accurately without workpiece dimension with minimum error of 1.3%.

The Flexible Seal Fabrication utilizing a rubber Injection Method (고무 인젝션 방법을 이용한 플렉시블 씰 제작)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.707-710
    • /
    • 2010
  • The most important things in the KSLV-I Kick Motor nozzle is a development of flexible seal that is utilized to drive a movable nozzle. Especially, a manufacturing technology of flexible seal is one of the key element in the Kick Motor nozzle development. The method used to produce flexible seal in the Kick Motor is injection method. Mold design technology, rubber injection technic and molding process through flexible seal manufacture has been established. After manufacturing, X-Ray inspection have been carried out to confirm a adhesive and internal array of flexible seal.

  • PDF

Simulation Analysis of Flexible Track Drilling Machines Based on ADAMS (ADAMS 기반의 플렉시블 트랙 드릴링 머신의 시뮬레이션 분석)

  • Zhu, Zhong-gang;Zhang, Qi;Lv, Jian-Hua;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-7
    • /
    • 2018
  • Flexible track drilling machines are credited with important applications in the area of aircraft manufacturing because of their portability, quick installation capabilities, and high efficiency. However, their structures are special and the constitution principles and motion characteristics are difficult to control, increasing the development costs and research cycle in the context of the technology blockade of foreign companies. The simulation analysis of flexible track drilling machines can be conducted by applying virtual prototypes, shortening the development cycle and reducing the cost. In this paper, a model of a machine is established by using the SolidWorks software and imported into ADAMS to conduct kinematic and dynamic simulation analysis. During the analysis, the feasibility of the configuration is checked, a reasonable driving motion is chosen, potential deficiencies are found, and improvement actions are raised.

On optimal cyclic scheduling for a flexible manufacturing cell

  • Kise, Hiroshi;Nakamura, Shinji;Karuno, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1250-1255
    • /
    • 1990
  • This paper discusses an optimal cyclic scheduling problem for a FMC (Flexible Manufacturing Cell) modeled by a two-machine flowshop with two machining centers with APC's (Automated Pallet Changers), an AGV (Automated Guided Vehicle) and loading and unloading stations. Cyclic production in which similar patterns of production is repeated can significantly reduce the production lead-time and WIP (Work-In-Process) in such flexible, automated system. Thus we want to find an optimal cyclic schedule that minimizes the cycle time in each cycle. However, the existence of APC's as buffer storage for WIP makes the problem intractable (i.e., NP-complete). We propose an practical approximation algorithm that minimizes, instead of each cycle time, its upper bound. Performances of this algorithm are validated by the way of computer simulations.

  • PDF

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang;Yung-Eun Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.120-130
    • /
    • 2023
  • PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

Study on Application of Flexible Die to Sheet Metal Forming Process (가변금형의 박판 성형공정 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

Design and Implementation of a Wearable LED Display Device

  • Shin, Seung-Hyeok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.7-13
    • /
    • 2015
  • Wearable device, next generation smart device, is consistently growing. The flexible display will be a kind of display in the wearable device. The flexible display technology is now evolving with end-user requirement such as portability and easy installation. Previous wearable display products still have some difficulties in manufacturing and in flexibility whole device. But it can be a flexible display with LED device and utilized in commercial area. In this paper, we propose a driver to control the LED display and implement a flexible LED display system.

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF

Process Optimization for Flexible Printed Circuit Board Assembly Manufacturing

  • Hong, Sang-Jeen;Kim, Hee-Yeon;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • A number of surface mount technology (SMT) process variables including land design are considered for minimizing tombstone defect in flexible printed circuit assembly in high volume manufacturing. As SMT chip components have been reduced over the past years with their weights in milligrams, the torque that once helped self-centering of chips, gears to tombstone defects. In this paper, we have investigated the correlation of the assembly process variables with respect to the tombstone defect by employing statistically designed experiment. After the statistical analysis is performed, we have setup hypotheses for the root causes of tombstone defect and derived main effects and interactions of the process parameters affecting the hypothesis. Based on the designed experiments, statistical analysis was performed to investigate significant process variable for the purpose of process control in flexible printed circuit manufacturing area. Finally, we provide beneficial suggestions for find-pitch PCB design, screen printing process, chip-mounting process, and reflow process to minimize the tombstone defects.