• 제목/요약/키워드: Flexible foundation

검색결과 140건 처리시간 0.02초

유연복합재 구동축의 동특성에 관한 실험 분석 (Experimental Investigation into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts)

  • 신응수;임병수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.123-126
    • /
    • 2005
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A testrig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spinup testings. It turns out that the analytic results are in good agreement with the experimental ones.

  • PDF

하중 및 기초조건에 따른 GCP 복합지반의 거동분석 (Analysis of Behavior on GCP Composite Ground Considering Loading and Foundation Conditions)

  • 김경업;박경호;김대현
    • 한국지반신소재학회논문집
    • /
    • 제17권1호
    • /
    • pp.127-137
    • /
    • 2018
  • 쇄석다짐말뚝(Gravel Compaction Pile, 이하 GCP)는 느슨한 사질토지반이나 연약한 점토지반에 쇄석을 다지고 압입하여 원지반에 말뚝을 조성함으로써 지반을 개량하는 공법이다. 국내 GCP공법은 많은 연구자들이 실내실험, 현장실험 등을 이용해 GCP 복합지반의 응력거동을 분석하였으나, GCP 복합지반의 상부에 재하되는 매트기초의 강성 차이에 따른 거동분석은 다소 미미한 실정이다. 따라서 본 연구에서는 수치해석을 통해 기초의 강성 차이에 따라 응력분담비를 규명하고자 하였다. 이를 위해 유한요소 해석프로그램인 ABAQUS를 이용하여 치환율을 변화시켜 모델링하고, 강성 차이에 따라 복합지반의 응력분담비와, 침하량 및 최대 수평변위량을 분석하였다. 분석 결과, 강성기초의 하중재하시 응력분담비는 연성기초의 하중재하보다 높게 평가되었으며, 연성하중재하조건에서의 침하량은 강성조건에서 보다 다소 높은 경향이 나타났다. 이는 상부기초의 강성 차이에 대한 응력거동 특성을 명확히 규명해야 할 필요성이 있다고 판단된다. 또한, 최대 수평변위는 강성의 차이에 상관없이 일정한 위치에서 최대 변위가 발생하였다.

기초지반강성을 고려한 벽식구조 아파트의 지진응답에 관한 연구 (Study on Seismic Response of Wall-Slab Apartment Building Sturucture Considering the Stiffnesses of a Foundation-Soil System)

  • 김지원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.167-175
    • /
    • 2000
  • Seismic analyses of structures can`t be performed without considering the effect of soil-structure interaction and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show a significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out assuming a rigid base and ignoring the characteristics of a foundation and the properties of the underlying soil. In this study, seismic analyses of apartment buildings of a particular wall-slab structural type were carried out comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Wall-slab type low-rise or mid-height apartment buildings built on the deep soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is too safe but uneconomical to utilize the design spectra of UBC-97 for the seismic analysis of a wall-slab type apartment buildings due to the too conservative design.

  • PDF

움직임 실루엣 영상의 일반적인 표현 방식에 대한 연구 (A General Representation of Motion Silhouette Image: Generic Motion Silhouette Image(GMSI))

  • 홍성준;이희성;김은태
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.749-753
    • /
    • 2007
  • In this paper, a generalized version of the Motion Silhouette Image(MSI) called the Generic Motion Silhouette Image (GMSI) is proposed for gait recognition. The GMSI is a gray-level image and involves the spatiotemporal information of individual motion. The GMSI not only generalizes the MSI but also reflects a flexible feature of a gait sequence. Along with the GMSI, we use the Principal Component Analysis(PCA) to reduce the dimensionality of the GMSI and the Nearest Neighbor(NN) for classification. We apply the proposed feature to NLPR database and compare it with the conventional MSI. Experimental results show the effectiveness of the GMSI.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

3차원 구형 액체 저장 Tank의 Rocking응답 (The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank)

  • 김재관;박진용;진병무;조양희
    • 한국지진공학회논문집
    • /
    • 제2권1호
    • /
    • pp.23-34
    • /
    • 1998
  • 연약한 지반위에 기초한 유연한 구형 액체 저장탱크의 Rocking 운동에 대한 3차원 지진응답을 규명하기 위해서 동적 유체-구조 물-지반 계의 상호작용 해석방법을 개발하였다. 수평방향 병진 운동과 Rocking 운동을 받는 3차원의 구형 탱크의 운동 지배방정식을 Rayleigh-Ritz 방법을 적용하여 유도하였고 기반암위 토층의 표면에 놓인 강체 기초의 동적 강성행렬과 유체-구조물 계의 지배방정식을 결합하여 계산하였다.

  • PDF

Soil-structure interaction effect on active control of multi-story buildings under earthquake loads

  • Chen, Genda;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.517-532
    • /
    • 2000
  • A direct output feedback control scheme was recently proposed by the authors for single-story building structures resting on flexible soil body. In this paper, the control scheme is extended to mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the effect on ground motions and is monitored in real time with accelerometers at foundation. The latter includes the effect on the dynamic characteristics of structures, which is formulated by modifying the classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system. Numerical result on the study of a $\frac{1}{4}$-scale three-story structure, supported by a viscoelastic half-space of soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric studies are performed to understand how soil damping and flexibility affect the effectiveness of active tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated in detail for practical applications.

Seismic optimization and performance assessment of special steel moment-resisting frames considering nonlinear soil-structure interaction

  • Saeed Gholizadeh;Arman Milany;Oguzhan Hasancebi
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.339-353
    • /
    • 2023
  • The primary objective of the current study is to optimize and evaluate the seismic performance of steel momentresisting frame (MRF) structures considering soil-structure interaction (SSI) effects. The structural optimization is implemented in the context of performance-based design in accordance with FEMA-350 at different confidence levels from 50% to 90% by taking into account fixed- and flexible-base conditions using an efficient metaheuristic algorithm. Nonlinear response-history analysis (NRHA) is conducted to evaluate the seismic response of structures, and the beam-on-nonlinear Winkler foundation (BNWF) model is used to simulate the soil-foundation interaction under the MRFs. The seismic performance of optimally designed fixed- and flexible-base steel MRFs are compared in terms of overall damage index, seismic collapse safety, and interstory drift ratios at different performance levels. Two illustrative examples of 6- and 12-story steel MRFs are presented. The results show that the consideration of SSI in the optimization process of 6- and 12-story steel MRFs results in an increase of 1.0 to 9.0 % and 0.5 to 5.0 % in structural weight and a slight decrease in structural seismic safety at different confidence levels.

토목섬유로 보강된 얕은기초 모래지반의 지지력 (Bearing Capacity of Shallow Foundation on Geosynthetic Reinforced Sand)

  • 원명수;링호;김유성
    • 한국지반공학회논문집
    • /
    • 제20권7호
    • /
    • pp.107-117
    • /
    • 2004
  • 느슨한 모래지반에서 보강재 층수 증가와 보강재의 강성과 형태 변화 그리고 얕은 기초 직하에 매설된 연성관의 깊이 등의 변화가 지지력-침하 곡선에 미치는 영향을 알아보기 위해 일련의 모형실험을 수행하였다. 시험결과, 무보강토 경우는 파괴형태가 국부전단으로 나타났으나 보강재 층수가 2층 이상이 되면 파괴형태는 국부전단에서 전반전단으로 바뀌고, 최적보강재 층수는 2층 이며, 지지력 개선에 있어서는 보강재의 초기강성과 형태가 최대인 장강도보다 중요한 것으로 나타났다. 무보강토에서 기초 직하에 연성관이 매설된 경우, 연성관의 매설 깊이가 기초 폭보다 얕으면 지지력과 극한지지력은 현저하게 감소하고, 보강토의 경우 연성관의 매설 깊이가 기초 폭보다 얕으면 파괴형태는 전반전단에서 국부전단으로 바뀌는 것으로 나타났다.

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • 제3권1호
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.