• 제목/요약/키워드: Flexible coupling

검색결과 188건 처리시간 0.016초

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

유체감쇠 커플링의 동특성에 관한 이론적 연구(I) (A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

유체감쇠 커플링의 동특성에 관한 실험적 연구(II) (An Experimental Study on the Dynamic Characteristics of Damping Flexible Coupling( II ))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.23-31
    • /
    • 1994
  • The present works are the experimental results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. The damping flexible coupling is manufactured and is compared for dynamic characteristics with other type coupling which is the Geislinger coupling. The static coefficient of stiffness and the damping coefficient allows the control of excitation frequency through a cam driver. The experimental results obtained from the two couplings are compared with the theoretically results.

  • PDF

고성능 복합재료 가요성 커플링에 관한 연구 (A Study of High Performance Composite Flexible Couplings)

  • 김필종;박일경;김근택;우경식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.79-82
    • /
    • 2004
  • The rotor drive system in rotor-craft carries out power transmission from powerplant to rotors and the drive shafts are fallen into misaligned condition by the vibration of engine and shafts and the deformation of supporting structures. The high performance flexible coupling accommodates these misalignments of drive shafts. In this study, we compare the performance of the metalic flexible coupling with the composite flexible coupling through analytic method to develop the high performance flexible coupling used in the rotor drive system of UAV tilt-rotor.

  • PDF

Modeling of Belt-Pulley and Flexible Coupling Effects on Submarine Driven System Electrical Motors

  • Jafarboland, Mehrdad;Zadehbagheri, Mahmoud
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.319-326
    • /
    • 2011
  • Nowadays numerous research projects are being conducted in the field of electric motors. Non-modeling of flexible connections such as couplings and the belt-pulley do not show some real behaviors. With an increase in the number of connections and drive factors, these Non-modeled modes become more important. The coupling of two electric motors, instead of one motor, in submarine propeller force is an obvious example which shows that Non-modeled vibration modes caused by flexible connections can disturb controller operation and make undesirable vibrations in the submarine body. In this paper a dynamic model of flexible connections and a completed dynamic model of two different coupled electric models is presented. A robust controller for the completed model is also amended so that the two controlling targets of a desired speed adjustment and an appropriate load division between the two motors with sufficient accuracy are achieved.

60 N.m급 플렉서블 디스크 커플링 구조해석 및 최적화 (A Structural Analysis and Optimization of a 60 N.m Class Flexible Disk Coupling)

  • 이현규;김병로;김성묵;김종봉
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.774-781
    • /
    • 2013
  • A structural analysis was carried out for a 60 N.m class flexible disk coupling. Flexible disk couplings are used to transmit power between two shafts. When a flexible coupling is used, some amount of misalignments such as angle of deviation and end play can be allowed in assembling the shafts. However, the maximum allowable misalignment should be decided to guarantee the fatigue life. In this study, the effect of the angle of deviation and end play on the maximum stress was investigated. From the analysis results, it was shown that the angle of deviation has a greater effect on the maximum stress than the end play. Furthermore, the dimensions of the disk plate were optimized to realize a better design. From the optimization, the maximum stress could be reduced by up to 5.2%.

디젤엔진의 비틀림진동 모니터링 시스템 개발을 위한 실험적인 연구 (Experimental Study for Torsional Vibration Monitoring System Development of Diesel Engine)

  • 이돈출;김상환;장석기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.640-646
    • /
    • 2001
  • The torsional vibration monitoring system(TVM) for large diesel engines was developed and applied by manufacturers of torsional vibration damper, flexible coupling and diesel engine since 1990s. And demands of TVM have been steadily increased to operate safely engine and to extend maintenance interval of damper and flexible coupling. In this paper, the experimental methods and algorithms of TVM development which used the existing PC, turning wheel and speed sensors in ship are introduced.

  • PDF

Effects of Misalignment of High Speed Flexible Coupling on the Fighter Aircraft Transmission Characteristics

  • Samikkanu, Nagesh;Basha, Abu Muhammed Junaid
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권2호
    • /
    • pp.91-99
    • /
    • 2012
  • The Fighter aircraft transmission system consists of a light weight, High Speed Flexible Coupling (HSFC) known as Power Take-Off shaft (PTO) for connecting Engine gearbox (EGB) with Accessory Gear Box (AGB). The HSFC transmits the power through series of specially contoured metallic annular thin flexible plates whose planes are normal to the torque axis. The HSFC operates at high speed ranging from 10,000 to 18,000 rpm. The HSFC is also catered for accommodating larger lateral and axial misalignment resulting from differential thermal expansion of the aircraft engine and mounting arrangement. The contoured titanium alloy flexible plates are designed with a thin cross sectional profile to accommodate axial and parallel misalignment by the elastic material flexure. This paper investigates the effect of misalignment on the transmission characteristics of the HSFC couplings. A mathematical model for the HSFC coupling with misalignment has been developed for analyzing the torque transmission and force interaction characteristics. An extensive testing has been conducted for validating characteristics of the designed coupling under various misalignment conditions. With this the suitability of the model adapted for the design iteration of HSFC development is validated. This method will reduce the design iteration cycles of HSFC and can be extended for the similar development of flexible couplings.

유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구 (A Study on the Coupled Shaft-Torsional and Blade-Bending Vibrations in the Flexible Rotor-Coupling-Blade System)

  • 이선숙;오병영;윤형원;차석주;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.221-226
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system is developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility is lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations is employed for developing the equation of the motion. The assumed modes method is used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearif, stiffness hardening and softening.

  • PDF

유한요소해석을 이용한 디스크 커플링의 토크전달 능력에 대한 연구 (A Study on the Torque Transmitting Capability of a Disk Coupling by Finite Element Analysis)

  • 서원상;김성묵;김종봉
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1171-1177
    • /
    • 2013
  • In this study, the torque transmitting capability of a flexible disk coupling was investigated. Flexible disc coupling is used to transmit power between two axes, and there exist mis-alignments such as angle of deviation and end play between two shafts. A disk is an important part in the flexible disk coupling because the disk has to transmit power between two mis-aligned shafts. To investigate the effect of mis-alignment on load carrying capacity, finite element analyses were carried out. Analyses were carried out for two types of disk; i.e., circular and square disks. The rotational and bending stiffness of disk plates was predicted to investigate the effect of mis-alignment on stress. As a result, it was shown that the mis-alignment can cause severe decrease in load-carrying capacity. And, the square disk showed better performance than the circular disk.